On fractional Langevin differential equations with anti-periodic boundary conditions

2017 ◽  
Vol 226 (16-18) ◽  
pp. 3577-3590 ◽  
Author(s):  
Hui Zhou ◽  
Jehad Alzabut ◽  
Liu Yang
2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Nhan T. Nguyen

This paper describes a modeling method for closed-loop unsteady fluid transport systems based on 1D unsteady Euler equations with nonlinear forced periodic boundary conditions. A significant feature of this model is the incorporation of dynamic constraints on the variables that control the transport process at the system boundaries as they often exist in many transport systems. These constraints result in a coupling of the Euler equations with a system of ordinary differential equations that model the dynamics of auxiliary processes connected to the transport system. Another important feature of the transport model is the use of a quasilinear form instead of the flux-conserved form. This form lends itself to modeling with measurable conserved fluid transport variables and represents an intermediate model between the primitive variable approach and the conserved variable approach. A wave-splitting finite-difference upwind method is presented as a numerical solution of the model. An iterative procedure is implemented to solve the nonlinear forced periodic boundary conditions prior to the time-marching procedure for the upwind method. A shock fitting method to handle transonic flow for the quasilinear form of the Euler equations is presented. A closed-loop wind tunnel is used for demonstration of the accuracy of this modeling method.


Author(s):  
Patrick J. Browne

SynopsisThis paper studies a linked system of second order ordinary differential equationswhere xx ∈ [ar, br] and the coefficients qrars are continuous, real valued and periodic of period (br − ar), 1 ≤ r,s ≤ k. We assume the definiteness condition det{ars(xr)} > 0 and 2k possible multiparameter eigenvalue problems are then formulated according as periodic or semi-periodic boundary conditions are imposed on each of the equations of (*). The main result describes the interlacing of the 2k possible sets of eigentuples thus extending to the multiparameter case the well known theorem concerning 1-parameter periodic equation.


Author(s):  
Patrick J. Browne ◽  
B. D. Sleeman

SynopsisThis paper studies the stability regions associated with the multi-parameter systemwhere the functions qr(xr), ars(xr) are periodic and the system is subjected to periodic or semi-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document