Cosmology with mass dimension one fields: recent developments

2020 ◽  
Vol 229 (11) ◽  
pp. 2079-2116
Author(s):  
S. H. Pereira ◽  
R. de C. Lima ◽  
M. E. S. Alves ◽  
T. M. Guimarães ◽  
J. F. Jesus ◽  
...  
2019 ◽  
Vol 128 (2) ◽  
pp. 20004 ◽  
Author(s):  
R. J. Bueno Rogerio ◽  
R. de C. Lima ◽  
L. Duarte ◽  
J. M. Hoff da Silva ◽  
M. Dias ◽  
...  

2019 ◽  
Vol 34 (16) ◽  
pp. 1950126 ◽  
Author(s):  
S. H. Pereira ◽  
Richard S. Costa

This work studies the finite temperature effects of a mass dimension one fermionic field, sometimes called Elko field. The equilibrium partition function was calculated by means of the imaginary time formalism and the result obtained was the same for a Dirac fermionic field, even though the Elko field does not satisfy a Dirac-like equation. The high and low temperature limits were obtained, and for the last case the degeneracy pressure due to Pauli exclusion principle can be responsible for the dark matter halos around galaxies to be greater than or of the same order of the galaxy radius. Also, for a light particle of about 1.0 eV and a density of just 1 particle per cubic centimeter, the value of the total dark matter mass due to Elko particles is of the same order of a typical galaxy. Such a result satisfactorily explains the dark matter as being formed just by Elko fermionic particles and also the existence of galactic halos that go beyond the observable limit.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Ailier Rivero-Acosta ◽  
Carlos A. Vaquera-Araujo

Abstract In this work, the one-loop renormalization of a theory for fields transforming in the $$(1,0)\oplus (0,1)$$(1,0)⊕(0,1) representation of the Homogeneous Lorentz Group is studied. The model includes an arbitrary gyromagnetic factor and self-interactions of the spin 1 field, which has mass dimension one. The model is shown to be renormalizable for any value of the gyromagnetic factor.


2017 ◽  
Vol 118 (1) ◽  
pp. 10003 ◽  
Author(s):  
R. J. Bueno Rogerio ◽  
J. M. Hoff da Silva
Keyword(s):  

2016 ◽  
Vol 113 (6) ◽  
pp. 60001 ◽  
Author(s):  
R. J. Bueno Rogerio ◽  
J. M. Hoff da Silva ◽  
S. H. Pereira ◽  
Roldão da Rocha

2014 ◽  
Vol 23 (14) ◽  
pp. 1444002 ◽  
Author(s):  
R. T. Cavalcanti

In this paper, we investigate the constraint equations of the Lounesto spinor fields classification and show that it can be used to completely characterize all the singular classes, which can potentially accommodate further mass dimension one fermions, beyond the well known Elko spinor fields. This result can be useful for two purposes: Besides a great abridgement in the classification of a given spinor field, we provide a general form of each class of spinor fields, which can be used furthermore to search for a general classification of spinors dynamics.


2009 ◽  
Vol 06 (03) ◽  
pp. 461-477 ◽  
Author(s):  
ROLDÃO DA ROCHA ◽  
J. M. HOFF DA SILVA

Dual-helicity eigenspinors of the charge conjugation operator (ELKO spinor fields) belong — together with Majorana spinor fields — to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class-(5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three respectively corresponding to flagpole, flag-dipole and Weyl spinor fields. Using the mapping from ELKO spinor fields to the three classes Dirac spinor fields, it is shown that the Einstein–Hilbert, the Einstein–Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), as the prime Lagrangian for supergravity. The Holst action is related to the Ashtekar's quantum gravity formulation. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. Furthermore we consider the necessary and sufficient conditions to map Dirac spinor fields (DSFs) to ELKO, in order to naturally extend the Standard Model to spinor fields possessing mass dimension one. As ELKO is a prime candidate to describe dark matter and can be obtained from the DSFs, via a mapping explicitly constructed that does not preserve spinor field classes, we prove that — in particular — the Einstein–Hilbert, Einstein–Palatini, and Holst actions can be derived from the QSL, as a fundamental Lagrangian for supergravity, via ELKO spinor fields. The geometric meaning of the mass dimension-transmuting operator — leading ELKO Lagrangian into the Dirac Lagrangian — is also pointed out, together with its relationship to the instanton Hopf fibration.


Sign in / Sign up

Export Citation Format

Share Document