scholarly journals ELKO SPINOR FIELDS: LAGRANGIANS FOR GRAVITY DERIVED FROM SUPERGRAVITY

2009 ◽  
Vol 06 (03) ◽  
pp. 461-477 ◽  
Author(s):  
ROLDÃO DA ROCHA ◽  
J. M. HOFF DA SILVA

Dual-helicity eigenspinors of the charge conjugation operator (ELKO spinor fields) belong — together with Majorana spinor fields — to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class-(5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three respectively corresponding to flagpole, flag-dipole and Weyl spinor fields. Using the mapping from ELKO spinor fields to the three classes Dirac spinor fields, it is shown that the Einstein–Hilbert, the Einstein–Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), as the prime Lagrangian for supergravity. The Holst action is related to the Ashtekar's quantum gravity formulation. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. Furthermore we consider the necessary and sufficient conditions to map Dirac spinor fields (DSFs) to ELKO, in order to naturally extend the Standard Model to spinor fields possessing mass dimension one. As ELKO is a prime candidate to describe dark matter and can be obtained from the DSFs, via a mapping explicitly constructed that does not preserve spinor field classes, we prove that — in particular — the Einstein–Hilbert, Einstein–Palatini, and Holst actions can be derived from the QSL, as a fundamental Lagrangian for supergravity, via ELKO spinor fields. The geometric meaning of the mass dimension-transmuting operator — leading ELKO Lagrangian into the Dirac Lagrangian — is also pointed out, together with its relationship to the instanton Hopf fibration.

2014 ◽  
Vol 23 (14) ◽  
pp. 1444002 ◽  
Author(s):  
R. T. Cavalcanti

In this paper, we investigate the constraint equations of the Lounesto spinor fields classification and show that it can be used to completely characterize all the singular classes, which can potentially accommodate further mass dimension one fermions, beyond the well known Elko spinor fields. This result can be useful for two purposes: Besides a great abridgement in the classification of a given spinor field, we provide a general form of each class of spinor fields, which can be used furthermore to search for a general classification of spinors dynamics.


2009 ◽  
Vol 24 (16n17) ◽  
pp. 3227-3242 ◽  
Author(s):  
J. M. HOFF DA SILVA ◽  
ROLDÃO DA ROCHA

A fundamental action, representing a mass dimension-transmuting operator between Dirac and ELKO spinor fields, is performed on the Dirac Lagrangian, in order to lead it into the ELKO Lagrangian. Such a dynamical transformation can be seen as a natural extension of the Standard Model that incorporates dark matter fields. The action of the mass dimension-transmuting operator on a Dirac spinor field, that defines and introduces such a mapping, is shown to be a composition of the Dirac operator and the nonunitary transformation that maps Dirac spinor fields into ELKO spinor fields, defined in J. Math. Phys.48, 123517 (2007). This paper gives allowance for ELKO, as a candidate to describe dark matter, to be incorporated in the Standard Model. It is intended to present for the first time, up to our knowledge, the dynamical character of a mapping between Dirac and ELKO spinor fields, transmuting the mass dimension of spin one-half fermionic fields from 3/2 to 1 and from 1 to 3/2.


2006 ◽  
Vol 21 (01) ◽  
pp. 65-74 ◽  
Author(s):  
R. DA ROCHA ◽  
W. A. RODRIGUES

This paper proves that from the algebraic point of view ELKO spinor fields belong together with Majorana spinor fields to a wider class, the so-called flagpole spinor fields, corresponding to the class 5, according to Lounesto spinor field classification. We show moreover that algebraic constraints imply that any class 5 spinor field is such that the 2-component spinor fields entering its structure have opposite helicities. The proof of our statement is based on Lounesto general classification of all spinor fields, according to the relations and values taken by their associated bilinear covariants, and can eventually shed some new light on the algebraic investigations concerning dark matter.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050319
Author(s):  
R. J. Bueno Rogerio

In this paper, we investigate a quite recent new class of spin one-half fermions, namely Ahluwalia class-7 spinors, endowed with mass dimensionality 1 rather than 3/2, being candidates to describe dark matter. Such spinors, under the Dirac adjoint structure, belongs to the Lounesto’s class-6, namely, dipole spinors. Up to our knowledge, dipole spinor fields have Weyl spinor fields as their most known representative, nonetheless, here we explore the dark counterpart of the dipole spinors, which represents eigenspinors of the chirality operator.


Author(s):  
V.G. Krechet ◽  
◽  
V.B. Oshurko ◽  
A.E. Baidin ◽  
◽  
...  

In the framework of general relativity, possible effects of the gravitational interactions in the Dirac spinor field are considered. It is shown that these interactions manifest locally as contact spin-spin interaction of the gravitational and spinor fields. This interaction leads to the classical rotation of particles with spin ħ /2. As a result, it leads to appearance of local internal space-time with specific geometric properties for each particle. New effect of an increase of the mass of spinor particles due to this interaction is found. Also, an explanation of the existence of a magnetic moment in Dirac spinor particles as a result of a local electro-spin-spin interaction has been proposed.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850172
Author(s):  
Masoumeh Moazzen Sorkhi ◽  
Zahra Ghalenovi

In this work, we investigate the localization of a five-dimensional (5D) free massless Elko spinor field on de Sitter thick branes that are generated by a canonical or phantom scalar field. It is shown that the zero mode of Elko field cannot be localized on the de Sitter brane. In order to circumvent this problem, we employ a nonminimal coupling term in the 5D Elko spinor field action and find that the Elko field can be localized on the de Sitter brane with this mechanism.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550048 ◽  
Author(s):  
Cheng-Yang Lee

According to Ahluwalia and Grumiller, massive spin-half fields of mass-dimension one can be constructed using the eigenspinors of the charge-conjugation operator (Elko) as expansion coefficients. In this paper, we generalize their result by constructing quantum fields from higher-spin Elko. The kinematics of these fields are thoroughly investigated. Starting with the field operators, their propagators and Hamiltonians are derived. These fields satisfy the higher-spin generalization of the Klein–Gordon but not the Dirac equation. Independent of the spin, they are all of mass-dimension one and are thus endowed with renormalizable self-interactions. These fields violate Lorentz symmetry. The violation can be characterized by a non-Lorentz-covariant term that appears in the Elko spin-sums. This term provides a decomposition of the generalized higher-spin Dirac operator in the momentum space thus suggesting a possible connection between the mass-dimension one fields and the Lorentz-invariant fields.


2007 ◽  
Vol 16 (10) ◽  
pp. 1653-1667 ◽  
Author(s):  
R. DA ROCHA ◽  
J. G. PEREIRA

We show that the Einstein–Hilbert, the Einstein–Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein–Hilbert, Einstein–Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field — Weyl, Majorana, flagpole, or flag-dipole spinor fields — yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.


2011 ◽  
Vol 03 ◽  
pp. 133-142 ◽  
Author(s):  
ROLDÃO DA ROCHA ◽  
J. M. HOFF DA SILVA ◽  
ALEX E. BERNARDINI

We report about some achievements and developments provided by the ELKO program, in particular the ones recently accomplished.1 Exotic dark spinor fields has been investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. Exotic terms operating on standard model Dirac spinor fields are usually absorbed by gauge transformations encoded as a shift of some vector potential representing an element of the cohomology group H1(M, ℤ2). That is not the case of ELKO, once they cannot carry gauge charge. As a consequence, the ELKO program requires a complete evaluation of topological analysis. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly computed. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints on the spacetime metric structure. Besides being candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as to explain the spacetime metric structure.


1972 ◽  
Vol 50 (18) ◽  
pp. 2100-2104 ◽  
Author(s):  
Mark S. Drew

Conformally covariant equations for free spinor fields are determined uniquely by carrying out a descent to Minkowski space from the most general first-order rotationally covariant spinor equations in a six-dimensional flat space. It is found that the introduction of the concept of the "conformally invariant mass" is not possible for spinor fields even if the fields are defined not only on the null hyperquadric but over the entire manifold of coordinates in six-dimensional space.


Sign in / Sign up

Export Citation Format

Share Document