PRODUCTION AND PURIFICATION OF VIRAL VECTORS AND SAFETY CONSIDERATIONS RELATED TO THEIR USE

Author(s):  
Otto-Wilhelm Merten ◽  
Matthias Schweizer ◽  
Parminder Chahal ◽  
Amine Kamen
2021 ◽  
Author(s):  
Sebastian Wagner ◽  
Christoph Baldow ◽  
Andrea Calabria ◽  
Laura Rudilosso ◽  
Pierangela Gallina ◽  
...  

High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and to a preclinical model of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors.


Nanomedicine ◽  
2020 ◽  
Vol 15 (18) ◽  
pp. 1805-1815
Author(s):  
Kathryn M Luly ◽  
John Choi ◽  
Yuan Rui ◽  
Jordan J Green ◽  
Eric M Jackson

Current standard of care for many CNS tumors involves surgical resection followed by chemotherapy and/or radiation. Some pediatric brain tumor types are infiltrative and diffuse in nature, which reduces the role for surgery. Furthermore, children are extremely vulnerable to neurological sequelae from surgery and radiation therapy, thus alternative approaches are in critical need. As molecular targets underlying various cancers become more clearly defined, there is an increasing push for targeted gene therapies. Viral vectors and nonviral nanoparticles have been thoroughly investigated for gene delivery and show promise as vectors for gene therapy for pediatric brain cancer. Here, we review inorganic and organic materials in development for nanoparticle gene delivery to the brain with a particular focus on safety.


Sign in / Sign up

Export Citation Format

Share Document