vector integration
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 24)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Mengxue Hou ◽  
Qiuyang Tao ◽  
Fumin Zhang

Abstract We investigate the interaction between a human and a miniature autonomous blimp using a wand as pointing device. The wand movement generated by the human is followed by the blimp through a tracking controller.The Vector Integration to Endpoint (VITE) model, previously applied to human-computer interface (HCI), has been applied to model the human generated wand movement when interacting with the blimp. We show that the closed-loop human-blimp dynamics are exponentially stable. Similar to HCI using computer mouse, overshoot motion of the blimp has been observed. The VITE model can be viewed as a special reset controller used by the human to generate wand movements that effectively reduce the overshoot of blimp motion. Moreover, we have observed undershoot motion of the blimp due to its inertia, which does not appear in HCI using computer mouse. The asymptotic stability of the human-blimp dynamics is beneficial towards tolerating the undershoot motion of the blimp.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2797-2797
Author(s):  
Tobias Bexte ◽  
Lacramioara Botezatu ◽  
Csaba Miskey ◽  
Julia Campe ◽  
Lisa Marie Reindl ◽  
...  

Abstract Background: Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity. Recently, we and others showed that virally transduced NK cells equipped with a synthetic chimeric antigen receptor (CAR) targeting CD19 induced enhanced killing of acute lymphoblastic leukemia (ALL) cells. Here, we demonstrate for the first time that primary NK cells can be engineered using the non-viral Sleeping Beauty (SB) transposon/transposase system to stably express a CD19-CAR with a safe genomic integration profile and high anti-leukemic efficiency in vitro and in vivo. Methods: Primary NK cells were isolated from PBMCs from healthy donors. SB transposons vectorized as minicircles (MC), which encode either a Venus fluorescent protein or a CD19-CAR together with truncated EGFR (tEGFR) as a marker, were introduced in combination with the hyperactive SB100X transposase into primary NK cells via nucleofection. The genetically engineered NK cells were expanded using IL-15 cytokine stimulation under feeder-cell free conditions. Vector integration sites were mapped by analyzing the genomic region around each insertion site in genomic DNA from long-term cultivated gene-modified NK cells, engineered ether by lentiviral (LV) or SB-based technology. Stable gene delivery and biological activity were monitored by flow cytometry and cytotoxicity of CD19-CAR NK cells against CD19-positive ALL and CD19-negative cell lines. Results: Applying a protocol optimized with respect to nucleofection pulses, time points and plasmid ratios, primary NK cells showed long-lasting Venus expression (up to 50%) upon SB-mediated gene delivery with similar viability as non-treated (NT) NK cells during feeder-cell free ex-vivo expansion using IL-15. Likewise, SB transposon-engineered CD19-CAR NK cells displayed high viability, durable transgene expression (Fig 1 A), and no significant change in the NK cell phenotype profile. Next, we assessed vector integration into genomic safe harbors (GSH). GSH are defined as regions of human chromosomes that fulfill the following five criteria: not ultraconserved, >300 kb away from miRNA genes, >50 kb away from transcriptional start sites (TSS), >300 kb away from genes involved in cancer and outside transcription units. CD19-CAR NK cells generated using SB100X showed a significantly higher frequency of vector integration into GSH compared to LV-transduced CAR-NK cells and a significantly more-close to random nucleotide frequency (computer-generated random positions in the genome map to GSHs; random 43.68%; LV 14.78%, SB100X 23.99%; p<0.05) (Fig 1 B). MC.CD19-CAR NK cells generated with the SB platform demonstrated significantly higher cytotoxicity compared to NT NK cells against CD19-positive Sup-B15 ALL cells after long-term cultivation for two to three weeks and no loss of natural intrinsic cytotoxicity. After 4-hour co-culture, significantly enhanced specific tumor cell lysis was found for MC.CD19-CAR NK cells vs NT NK cells at all effector to target cell ratios (E:T) tested (E:T 20:1 83.88% vs 43.13%; E:T 10:1 75.18% vs 31.32%; E:T 5:1 67.38 vs 32.22%; E:T 1:1 42.54 vs 10.19%; p<0.05) (Fig 1 C). With regard to intrinsic natural cytotoxicity of NK cells, no significant decrease in cell killing was overserved for SB-gene-modified CD19-CAR NK cells compared to NT NK cells against CD19-negative K562 cells (E:T 5:1 83%; p<0.05) (Fig 1 D). Significantly enhanced antitumor potential of SB-generated CD19-CAR NK cells was confirmed in a systemic CD19-positive lymphoma xenograft model (NSG-Nalm-6/Luc) in vivo. After injection of 0.5x10 6 tumor cells per mouse and lymphoma engraftment, animals were treated with a single dose of 10x10 6 SB-modified CD19-CAR NK cells pooled from three different donors with a mean tEGFR/CAR expression of 34%. MC.CD19-CAR NK cell therapy resulted in rapid lymphoma eradication in all treated mice (n=4; p<0.05), whereas mice receiving similar amounts of NT NK cells showed progressive lymphoma growth comparable to untreated control mice (Fig 1 E-F). Conclusion: Taken together, the Sleeping Beauty transposon system represents an innovative gene therapy approach for non-viral engineering of safe, highly functional and relatively cost-efficient CAR-NK cells that may not only be suitable for ALL therapy but also for a broad range of other applications in cancer therapy. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gajendra W. Suryawanshi ◽  
Hubert Arokium ◽  
Sanggu Kim ◽  
Wannisa Khamaikawin ◽  
Samantha Lin ◽  
...  

Abstract Background Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. Methods Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. Results A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice—providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. Conclusions Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.


2021 ◽  
Author(s):  
Sebastian Wagner ◽  
Christoph Baldow ◽  
Andrea Calabria ◽  
Laura Rudilosso ◽  
Pierangela Gallina ◽  
...  

High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and to a preclinical model of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors.


2021 ◽  
Author(s):  
Daniela Cesana ◽  
Andrea Calabria ◽  
Laura Rudilosso ◽  
Pierangela Gallina ◽  
Fabrizio Benedicenti ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. 2471
Author(s):  
Paul E. Monahan ◽  
Claude Négrier ◽  
Michael Tarantino ◽  
Leonard A. Valentino ◽  
Federico Mingozzi

Adeno-associated viral (AAV) vector gene therapy has shown promise as a possible cure for hemophilia. However, immune responses directed against AAV vectors remain a hurdle to the broader use of this gene transfer platform. Both innate and adaptive immune responses can affect the safety and efficacy of AAV vector–mediated gene transfer in humans. These immune responses may be triggered by the viral capsid, the vector’s nucleic acid payload, or other vector contaminants or excipients, or by the transgene product encoded by the vector itself. Various preclinical and clinical strategies have been explored to overcome the issues of AAV vector immunogenicity and transgene-related immune responses. Although results of these strategies are encouraging, more efficient approaches are needed to deliver safe, predictable, and durable outcomes for people with hemophilia. In addition to durability, long-term follow-up of gene therapy trial participants will allow us to address potential safety concerns related to vector integration. Herein, we describe the challenges with current methodologies to deliver optimal outcomes for people with hemophilia who choose to undergo AAV vector gene therapy and the potential opportunities to improve on the results.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 664
Author(s):  
Julie Thomy ◽  
Frederic Sanchez ◽  
Marta Gut ◽  
Fernando Cruz ◽  
Tyler Alioto ◽  
...  

Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.


2021 ◽  
Vol 5 (5) ◽  
pp. 1239-1249
Author(s):  
Chang Li ◽  
Kevin A. Goncalves ◽  
Tamás Raskó ◽  
Amit Pande ◽  
Sucheol Gil ◽  
...  

Abstract We have developed an in vivo hemopoietic stem cell (HSC) gene therapy approach without the need for myelosuppressive conditioning and autologous HSC transplantation. It involves HSC mobilization and IV injection of a helper-dependent adenovirus HDAd5/35++ vector system. The current mobilization regimen consists of granulocyte colony-stimulating factor (G-CSF) injections over a 4-day period, followed by the administration of plerixafor/AMD3100. We tested a simpler, 2-hour, G-CSF–free mobilization regimen using truncated GRO-β (MGTA-145; a CXCR2 agonist) and plerixafor in the context of in vivo HSC transduction in mice. The MGTA-145+plerixafor combination resulted in robust mobilization of HSCs. Importantly, compared with G-CSF+plerixafor, MGTA-145+plerixafor led to significantly less leukocytosis and no elevation of serum interleukin-6 levels and was thus likely to be less toxic. With both mobilization regimens, after in vivo selection with O6-benzylguanine (O6BG)/BCNU, stable GFP marking was achieved in >90% of peripheral blood mononuclear cells. Genome-wide analysis showed random, multiclonal vector integration. In vivo HSC transduction after mobilization with MGTA-145+plerixafor in a mouse model for thalassemia resulted in >95% human γ-globin+ erythrocytes at a level of 36% of mouse β-globin. Phenotypic analyses showed a complete correction of thalassemia. The γ-globin marking percentage and level were maintained in secondary recipients, further demonstrating that MGTA145+plerixafor mobilizes long-term repopulating HSCs. Our study indicates that brief exposure to MGTA-145+plerixafor may be advantageous as a mobilization regimen for in vivo HSC gene therapy applications across diseases, including thalassemia and sickle cell disease.


Author(s):  
Julie Thomy ◽  
Frederic Sanchez ◽  
Marta Gut ◽  
Fernando Cruz ◽  
Tyler Alioto ◽  
...  

Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration appears to be random, occurring mainly at a single locus, and thus confirming the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci, and often within the vector sequence itself. From these observations, we speculate that a non-homologous end joining-like mechanism is required during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in ecologically important marine algae.


Blood ◽  
2021 ◽  
Author(s):  
Suk See De Ravin ◽  
Julie Brault ◽  
Ronald J Meis ◽  
Siyuan Liu ◽  
Linhong Li ◽  
...  

Lentivector gene therapy for X-linked chronic granulomatous disease (X-CGD) has proven to be a viable approach, but random vector integration and subnormal protein production from exogenous promoters in transduced cells remain concerning for long-term safety and efficacy. A previous genome editing-based approach using SpCas9 and an oligodeoxynucleotide donor to repair genetic mutations demonstrated the capability to restore physiological protein expression, but lacked sufficient efficiency in quiescent CD34+ hematopoietic cells for clinical translation. Here, we show transient inhibition of p53-binding protein 1 (53BP1) significantly increased (2.3-fold) long-term homology directed repair (HDR) to achieve highly efficient (80% gp91phox+ cells compared to healthy donor control) long-term correction of X-CGD CD34+ cells.


Sign in / Sign up

Export Citation Format

Share Document