EVOKED POTENTIALS IN RESPONSE TO ELECTRICAL STIMULATION OF THE COCHLEAR NUCLEUS BY MEANS OF MULTI-CHANNEL SURFACE MICROELECTRODES

Author(s):  
KIYOSHI ODA ◽  
TETSUAKI KAWASE ◽  
DAISUKE YAMAUCHI ◽  
HIROSHI HIDAKA ◽  
TOSHIMITSU KOBAYASHI
2020 ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C.W. Brooks ◽  
Richard J. Edwards ◽  
Nadia L. Cerminara ◽  
...  

AbstractDamage to the cerebellum during posterior fossa surgery can lead to ataxia and in paediatric cases, the risk of cerebellar mutism syndrome. Animal electrophysiological and human imaging studies have shown compartmentalisation of sensorimotor and cognitive functions within the cerebellum. In the present study, electrophysiological monitoring of sensory and motor pathways was carried out to assess the location of limb sensorimotor representation within the human cerebellum, as a potential approach for real time assessment of neurophysiological integrity to reduce the incidence of cerebellar surgical morbidities.Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. For sensory mapping (n=8), electrical stimulation was applied to the median nerves, the posterior tibial nerves, or proximal and distal limb muscles and evoked field potential responses were sought on the cerebellar surface. For motor mapping (n=5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles.Evoked potentials on the cerebellar surface were found in two patients (25% of cases). In one patient, the evoked response was located on the surface of the right inferior posterior cerebellum in response to stimulation of the right leg. In the second patient, stimulation of the extensor digitorum muscle in the left forearm evoked a response on the surface of the left inferior posterior lobe. In the motor mapping cases no evoked EMG responses could be found.Intraoperative electrophysiological mapping, therefore, indicates it is possible to record evoked potentials on the surface of the human cerebellum in response to peripheral stimulation.


2009 ◽  
Vol 72 (4) ◽  
pp. 395-400 ◽  
Author(s):  
Hiroyuki Muramatsu ◽  
Kyouichi Suzuki ◽  
Tatsuya Sasaki ◽  
Masato Matsumoto ◽  
Jun Sakuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document