scholarly journals The development and characteristics of cortical auditory evoked potentials from electrical stimulation of the cochlear nucleus by an auditory brainstem implant in 6 children with cochlear nerve aplasia

Author(s):  
Ramsden R.
2002 ◽  
Vol 23 (5) ◽  
pp. 682-693 ◽  
Author(s):  
Vittorio Colletti ◽  
Marco Carner ◽  
Francesco Fiorino ◽  
Luca Sacchetto ◽  
Veronica Miorelli ◽  
...  

1995 ◽  
Vol 109 (5) ◽  
pp. 385-389 ◽  
Author(s):  
R. Laszig ◽  
W. P. Sollmann ◽  
N. Marangos

AbstractCentral electrical stimulation of the auditory pathway can allow hearing in patients sufferingfrom deafness localized in the auditory nerve. Developments in a multi-channel auditory brainstem implant based on the Nucleus Mini 22 Cochlear implant with transcutaneous signal transmission is discussed. The devices have been implanted in nine European patients suffering from Neurofibromatosis Type 2. Preliminary speech perception results and patient satisfaction are encouraging, and the data presented include some limited open speech recognition.


1983 ◽  
Vol 59 (6) ◽  
pp. 1013-1018 ◽  
Author(s):  
Aage R. Møller ◽  
Peter J. Jannetta

✓ Intracranial responses from the auditory nerve and the cochlear nucleus were recorded from patients undergoing neurosurgical operations during which these structures were exposed. Responses to stimulation of the ipsilateral ear with short tonebursts from the vicinity of the cochlear nucleus show a large surface-negative peak, the latency of which is close to that of peak III in the auditory brain-stem evoked potentials recorded from scalp electrodes. There was also a response to contralateral stimulation, smaller in amplitude and with a longer latency. It is concluded that the cochlear nucleus is the main generator of peak III responses, and that structures of the ascending auditory pathway that are more central than the cochlear nucleus are unlikely to contribute to wave III of the auditory brain-stem evoked potentials.


2005 ◽  
Vol 133 (1) ◽  
pp. 126-138 ◽  
Author(s):  
Vittorio Colletti ◽  
Marco Carner ◽  
Veronica Miorelli ◽  
Maurizio Guida ◽  
Liliana Colletti ◽  
...  

Previous studies have considered only patients with neurofibromatosis type 2 (NF2) older than 12 years as candidates for an auditory brainstem implant (ABI). Our study expands the potential criteria to include both children and adult subjects with other cochlear or cochlear nerve malfunctions who either would not benefit at all from a cochlear implant (eg, cochlear nerve aplasia or avulsion) or whose benefit was or would be severely compromised (eg, cochlear ossification, cochlear fracture). STUDY DESIGN: In our department, over the period from April 1997 to September 2002, 29 patients, 20 adults and 9 children, were fitted with ABIs. Their ages ranged from 14 months to 70 years. Thirteen subjects had tumors, 10 NF2 and 3 solitary vestibular schwannoma, and 16 patients had a variety of nontumor (NT) cochlear or cochlear nerve diseases. A retrosigmoid-transmeatal approach was used in T and a retrosigmoid approach in NT patients. The electrode array was inserted into the lateral recess of the fourth ventricle and correct electrode positioning was monitored with the aid of electrically evoked auditory brainstem responses (EABRs). RESULTS: Correct implantation was achieved in all patients. No complications were observed due to implantation surgery or related to ABI activation or long-term use. Auditory sensations were induced in all patients with various numbers of electrodes (from 5 to 15). Different pitch sensations were identifiable with different electrode stimulation. Closed-set word recognition, open-set sentence recognition, and speech tracking scores achieved by the patients are reported in detail. The auditory performance of the patients showed significantly better outcomes than controls (Multicentric European clinical investigations on ABI with NF2). CONCLUSION: We have shown that the indications for the ABI can be extended to include NT patients with severe cochlear and/or cochlear nerve abnormalities. The degree of auditory benefit varies as a function of the underlying pathological conditions, with NT subjects exhibiting significantly better outcomes than the T patients.


2019 ◽  
Vol 62 (4S) ◽  
pp. 1099-1116 ◽  
Author(s):  
Lindsey Roque ◽  
Casey Gaskins ◽  
Sandra Gordon-Salant ◽  
Matthew J. Goupell ◽  
Samira Anderson

Purpose Degraded temporal processing associated with aging may be a contributing factor to older adults' hearing difficulties, especially in adverse listening environments. This degraded processing may affect the ability to distinguish between words based on temporal duration cues. The current study investigates the effects of aging and hearing loss on cortical and subcortical representation of temporal speech components and on the perception of silent interval duration cues in speech. Method Identification functions for the words DISH and DITCH were obtained on a 7-step continuum of silence duration (0–60 ms) prior to the final fricative in participants who are younger with normal hearing (YNH), older with normal hearing (ONH), and older with hearing impairment (OHI). Frequency-following responses and cortical auditory-evoked potentials were recorded to the 2 end points of the continuum. Auditory brainstem responses to clicks were obtained to verify neural integrity and to compare group differences in auditory nerve function. A multiple linear regression analysis was conducted to determine the peripheral or central factors that contributed to perceptual performance. Results ONH and OHI participants required longer silence durations to identify DITCH than did YNH participants. Frequency-following responses showed reduced phase locking and poorer morphology, and cortical auditory-evoked potentials showed prolonged latencies in ONH and OHI participants compared with YNH participants. No group differences were noted for auditory brainstem response Wave I amplitude or Wave V/I ratio. After accounting for the possible effects of hearing loss, linear regression analysis revealed that both midbrain and cortical processing contributed to the variance in the DISH–DITCH perceptual identification functions. Conclusions These results suggest that age-related deficits in the ability to encode silence duration cues may be a contributing factor in degraded speech perception. In particular, degraded response morphology relates to performance on perceptual tasks based on silence duration contrasts between words.


Sign in / Sign up

Export Citation Format

Share Document