AN INDECOMPOSABLE REPRESENTATION AND THE COMPLEX VECTOR SPACE OF HOLOMORPHIC VECTOR FIELDS ON A PSEUDO-HERMITIAN SYMMETRIC SPACE

Author(s):  
Nobutaka BOUMUKI
2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Shilpa Gondhali ◽  
Parameswaran Sankaran

AbstractWe consider quotients of complex Stiefel manifolds by finite cyclic groups whose action is induced by the scalar multiplication on the corresponding complex vector space. We obtain a description of their tangent bundles, compute their mod p cohomology and obtain estimates for their span (with respect to their standard differentiable structure). We compute the Pontrjagin and Stiefel-Whitney classes of these manifolds and give applications to their stable parallelizability.


1999 ◽  
Vol 51 (6) ◽  
pp. 1175-1193 ◽  
Author(s):  
G. I. Lehrer ◽  
T. A. Springer

AbstractLet G be a finite group generated by (pseudo-) reflections in a complex vector space and let g be any linear transformation which normalises G. In an earlier paper, the authors showed how to associate with any maximal eigenspace of an element of the coset gG, a subquotient of G which acts as a reflection group on the eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient, as well as centralisers in G of certain elements of the coset. A criterion is also given in terms of the invariant degrees of G for an integer to be regular for G. A key tool is the investigation of extensions of invariant vector fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections of invariant hypersurfaces.


1976 ◽  
Vol 28 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
L. J. Cummings ◽  
R. W. Robinson

A formula is derived for the dimension of a symmetry class of tensors (over a finite dimensional complex vector space) associated with an arbitrary finite permutation group G and a linear character of x of G. This generalizes a result of the first author [3] which solved the problem in case G is a cyclic group.


1976 ◽  
Vol 63 ◽  
pp. 163-171 ◽  
Author(s):  
Hisasi Morikawa

A holomorphic n × n-matric automorphic factor with respect to a lattice L in Cg means a system of holomorphic n × n-matrices {μα(z) | α ∈ L} such that


1994 ◽  
Vol 36 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. M. Burns ◽  
B. Goldsmith ◽  
B. Hartley ◽  
R. Sandling

In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.


1976 ◽  
Vol 80 (2) ◽  
pp. 337-347 ◽  
Author(s):  
R. J. Plymen

In 1913, É. Cartan discovered that the special orthogonal groupSO(k) has a ‘two-valued’ representation (i.e. a projective representation) on a complex vector spaceSof dimension 2n, wherek= 2nor 2n+ 1. The projective representation in question lifts to a true representation of the double cover Spin (k) ofSO(k). We restrict attention to the casek= 2n. Under the action of Spin (2n),Sbreaks up into 2 irreducible subspaces:The vectors inSare calledspinors(relative toSO(2n)), those inS+orS−are calledhalf-spinors(4).


Sign in / Sign up

Export Citation Format

Share Document