scholarly journals On quasi-permutation representations of finite groups

1994 ◽  
Vol 36 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. M. Burns ◽  
B. Goldsmith ◽  
B. Hartley ◽  
R. Sandling

In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.

1963 ◽  
Vol 3 (2) ◽  
pp. 180-184 ◽  
Author(s):  
W. J. Wong

If G is a finite linear group of degree n, that is, a finite group of automorphisms of an n-dimensional complex vector space (or, equivalently, a finite group of non-singular matrices of order n with complex coefficients), I shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n.


1997 ◽  
Vol 39 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Houshang Behravesh

Let G be a finite linear group of degree n; that is, a finite group of automorphisms of an n-dimensional complex vector space (or, equivalently, a finite group of non-singular matrices of order n with complex coefficients). We shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n -dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n. See [5].


1970 ◽  
Vol 22 (3) ◽  
pp. 626-640 ◽  
Author(s):  
Charles Ford

Let ℭ be a finite group with a representation as an irreducible group of linear transformations on a finite-dimensional complex vector space. Every choice of a basis for the space gives the representing transformations the form of a particular group of matrices. If for some choice of a basis the resulting group of matrices has entries which all lie in a subfield K of the complex field, we say that the representation can be realized in K. It is well known that every representation of ℭ can be realized in some algebraic number field, a finitedimensional extension of the rational field Q.


1999 ◽  
Vol 51 (6) ◽  
pp. 1175-1193 ◽  
Author(s):  
G. I. Lehrer ◽  
T. A. Springer

AbstractLet G be a finite group generated by (pseudo-) reflections in a complex vector space and let g be any linear transformation which normalises G. In an earlier paper, the authors showed how to associate with any maximal eigenspace of an element of the coset gG, a subquotient of G which acts as a reflection group on the eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient, as well as centralisers in G of certain elements of the coset. A criterion is also given in terms of the invariant degrees of G for an integer to be regular for G. A key tool is the investigation of extensions of invariant vector fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections of invariant hypersurfaces.


1976 ◽  
Vol 28 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
L. J. Cummings ◽  
R. W. Robinson

A formula is derived for the dimension of a symmetry class of tensors (over a finite dimensional complex vector space) associated with an arbitrary finite permutation group G and a linear character of x of G. This generalizes a result of the first author [3] which solved the problem in case G is a cyclic group.


1964 ◽  
Vol 4 (2) ◽  
pp. 174-178 ◽  
Author(s):  
W. J. Wong

A quasi-permutation group of degree n was defined in [3] to be a finite group with a faithful representation of degree n whose character has only non-negative rational integral values. If G is such a group, then the following simple properties of permutation groups of degree n were proved to hold also for G:(i) the order of G is a divisor of the order of the symmetric group Sn of degree n; and (ii) if G is a p-group and n < p2, then G has exponent at most p and derived length at most 1 (i.e. G is elementary Abelian).


1966 ◽  
Vol 18 ◽  
pp. 1243-1250 ◽  
Author(s):  
I. M. Isaacs ◽  
D. S. Passman

Let G be a finite group and A a group of automorphisms of G. Clearly A acts as a permutation group on G#, the set of non-identity elements of G. We assume that this permutation representation is half transitive, that is all the orbits have the same size. A special case of this occurs when A acts fixed point free on G. In this paper we study the remaining or non-fixed point free cases. We show first that G must be an elementary abelian g-group for some prime q and that A acts irreducibly on G. Then we classify all such occurrences in which A is a p-group.


1984 ◽  
Vol 16 (3) ◽  
pp. 656-666 ◽  
Author(s):  
Bernard Ycart

We give here concrete formulas relating the transition generatrix functions of any random walk on a finite group to the irreducible representations of this group. Some examples of such explicit calculations for the permutation groups A4, S4, and A5 are included.


Sign in / Sign up

Export Citation Format

Share Document