scholarly journals Data provenance, curation and quality in metrology

2022 ◽  
pp. 167-187
Author(s):  
James Cheney ◽  
Adriane Chapman ◽  
Joy Davidson ◽  
Alistair B. Forbes
Keyword(s):  
2009 ◽  
Vol 31 (5) ◽  
pp. 721-732 ◽  
Author(s):  
Li-Wei WANG ◽  
Ze-Qian HUANG ◽  
Min LUO ◽  
Zhi-Yong PENG

Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Carola Borries ◽  
Jeroen B. Smaers ◽  
Carrie S. Mongle ◽  
Andreas Koenig

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 28
Author(s):  
Rameez Asif ◽  
Kinan Ghanem ◽  
James Irvine

A detailed review on the technological aspects of Blockchain and Physical Unclonable Functions (PUFs) is presented in this article. It stipulates an emerging concept of Blockchain that integrates hardware security primitives via PUFs to solve bandwidth, integration, scalability, latency, and energy requirements for the Internet-of-Energy (IoE) systems. This hybrid approach, hereinafter termed as PUFChain, provides device and data provenance which records data origins, history of data generation and processing, and clone-proof device identification and authentication, thus possible to track the sources and reasons of any cyber attack. In addition to this, we review the key areas of design, development, and implementation, which will give us the insight on seamless integration with legacy IoE systems, reliability, cyber resilience, and future research challenges.


2012 ◽  
Vol 22 (5) ◽  
pp. 229-230 ◽  
Author(s):  
John Lucocq
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document