SOFTWARE SYSTEM RELIABILITY DESIGN CONSIDERING HYBRID FAULT TOLERANT SOFTWARE ARCHITECTURES

Author(s):  
DENVIT METHANAVYN ◽  
NARUEMON WATTANAPONGSAKORN

Role of Configurable Distributed Checkout and Launch System (CDCLS) is pivotal in carrying out quick health checks and launching of Aerospace Flight Vehicles. Configurable Distributed Architecture provides flexibility for connecting nodes and scaling Distributed System. Different configurations can be derived from the Master Configuration. Since, Ultra high reliability and infallible performance of the CDCLS is of paramount importance, Safety criticality and Mission criticality analysis needs to be carried out for determination of mission critical parameters. These critical parameters need to be addressed by required fault tolerant architecture, which can be implemented in Hardware and Software for achieving system reliability objective (Say, 0.99).


Author(s):  
SHAMBHU J. UPADHYAYA ◽  
I-SHYAN HWANG

This paper presents a novel technique for the enhancement of operational reliability of processor arrays by a multi-level fault-tolerant design approach. The key idea of the design is based on the well known hierarchical design paradigm. The proposed fault-tolerant architecture uses a flexible reconfiguration of redundant nodes, thereby offering a better spare utilization than existing two-level redundancy schemes. A variable number of spares is provided at each level of redundancy which enables a flexible reconfiguration as well as area efficient layouts and better spare utilization. The spare nodes at each level can replace any of the failed primary nodes, not only at the same level but also those at the lower levels. The architecture can be adopted to increase the system reliability in Multi Chip Modules (MCMs). The main contributions of our work are the higher degree of fault tolerance, higher overall reliability, flexibility, and a better spare utilization.


2010 ◽  
Vol 44-47 ◽  
pp. 1867-1671
Author(s):  
Zhi Hong Huo ◽  
Yuan Zheng ◽  
Chang Xu

Networked control systems with network-induced delay, packet loss and parameters uncertainty is modeled in this paper, consider the sensors that can’t send information to controller and the actuators that can’t receive information calculated and sent by the controller, the integrity design of the networked control system with sensors failures and actuators failures is analyzed based on robust fault-tolerant control theory. Parametric expression of controller is given based on feasible solution of linear matrix inequality. After detailed theoretical analysis, the simulation results is provided, which further demonstrated the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document