ON GRAVITATIONAL LENSING BY A KERR BLACK HOLE

Author(s):  
MAURO SERENO ◽  
FABIANA DE LUCA
Author(s):  
M Falanga ◽  
P Bakala ◽  
R La Placa ◽  
V De Falco ◽  
A De Rosa ◽  
...  

Abstract We study the contributions to the relativistic Fe Kα line profile from higher order images (HOIs) produced by strongly deflected rays from the disk which cross the plunging region, located between the innermost stable circular orbit (ISCO) radius and the event horizon of a Kerr black hole. We investigate the characteristics features imprinted by the HOIs in the line profile for different black hole spins, disk emissivity laws and inclinations. We find that they extend from the red wing of the profile up to energies slightly lower than those of the blue peak, adding ∼0.4 − 1.3 per cent to the total line flux. The contribution to the specific flux is often in the ∼1 per cent to 7 per cent range, with the highest values attained for low and negative spin (a ≲ 0.3) black holes surrounded by intermediate inclination angle (i ∼ 40○) disks. We simulate future observations of a black hole X-ray binary system with the Large Area Detector of the planned X-ray astronomy enhanced X-ray Timing and Polarimetry Mission (eXTP) and find that the Fe Kα line profiles of systems accreting at ≲ 1 per cent the Eddington rate are affected by the HOI features for a range of parameters. This would provide evidence of the extreme gravitational lensing of HOI rays. Our simulations show also that not accounting for HOI contributions to the Fe Kα line profile may systematically bias measurements of the black hole spin parameter towards values higher by up to ∼0.3 than the inputted ones.


Author(s):  
Niyaz Uddin Molla ◽  
Ujjal Debnath

We investigate the strong gravitational lensing on equatorial plane as well as quasi-equatorial plane by the Kerr–Newman-Nut-Quintessence (KNNQ) black hole (BH) with the equation of state (EoS) parameter of the quintessence [Formula: see text] and the quintessence density [Formula: see text]. Our results show that the strong gravitational lensing in the KNNQ black hole space–time has some distinct behaviors from those in the backgrounds of the four dimension Kerr black hole. Also, we investigate the strong gravitational lensing on equatorial plane as well as quasi-equatorial plane by the KNNQ BH with the effects of Nut charge, spin parameter and quintessence parameter. First, we calculate the null geodesic equations using the Hamilton–Jacobi separation method. Then we investigate the equatorial lensing by KNNQ black hole. We obtain the deflection angle and deflection coefficients in the equatorial plane, which is affected by EoS parameter of the quintessence [Formula: see text], quintessence density [Formula: see text], Nut parameter [Formula: see text], spin parameter [Formula: see text] and quintessence parameter [Formula: see text] [Formula: see text]. Next, we discuss the lens equation and the observables in the equatorial plane. Finally, we investigate gravitational lensing by the KNNQ black hole in the quasi-equatorial plane. In this work, the quintessence density [Formula: see text], the EoS parameter of the quintessence [Formula: see text], Nut parameter [Formula: see text], spin parameter [Formula: see text] and quintessence parameter [Formula: see text] [Formula: see text] have significant effects on the strong gravitational lensing both in equatorial plane as well as quasi-equatorial plane.


Author(s):  
Carlos A. Benavides-Gallego ◽  
A. A. Abdujabbarov ◽  
Cosimo Bambi

Sign in / Sign up

Export Citation Format

Share Document