Strong Gravitational Lensing for the Quantum-Modified Schwarzschild Black Hole

2021 ◽  
Vol 60 (1) ◽  
pp. 387-396
Author(s):  
Ruanjing Zhang ◽  
Jian Lin ◽  
Qihong Huang
2016 ◽  
Vol 31 (01) ◽  
pp. 1650006
Author(s):  
Jin-Ling Geng ◽  
Yu Zhang ◽  
En-Kun Li ◽  
Peng-Fei Duan

Using the strong field limit approach, the strong field gravitational lensing in a black hole with deficit solid angle (DSA) and surrounded by quintessence-like matter (QM) has been investigated. The results show that the DSA [Formula: see text], the energy density of QM [Formula: see text] and the equation of state (EOS) parameter [Formula: see text] have some distinct effects on the strong field gravitational lensing. As [Formula: see text] or [Formula: see text] increases, the deflection angle and the strong field limit coefficients all increase faster and faster. Moreover, the evolution of the main observables also has been studied, which shows that the curves at [Formula: see text] are more steepy than those of [Formula: see text]. Compared with the Schwarzschild black hole, the black hole surrounded by QM has smaller relative magnitudes, and at [Formula: see text] both the angular position and angular separation are slightly bigger than those of Schwarzschild black hole, but when [Formula: see text], the angular position and the relative magnitudes all diminish significantly. Therefore, by studying the strong gravitational lensing, we can distinguish the black hole with a DSA and surrounded by QM from the Schwarzschild black hole and the effects of the DSA and QM on the strong gravitational lensing by black holes can be known better.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


Author(s):  
Xu Lu ◽  
Yi Xie

AbstractWeak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole is investigated and its observables are found. By taking the supermassive black holes Sgr A* and M87* respectively in the Galactic Center and at the center of M87 as lenses, we estimate these observables and analyse possibility of detecting this quantum improvement. It is not feasible to distinguish such a black hole by most observables in the near future except for the apparent size of the shadow. We also note that directly using measured shadow of M87* to constrain this quantum effect requires great care.


Author(s):  
Mustapha Azreg-Aïnou ◽  
Sebastian Bahamonde ◽  
Mubasher Jamil

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Farruh Atamurotov ◽  
Kimet Jusufi ◽  
Mubasher Jamil ◽  
Ahmadjon Abdujabbarov ◽  
Mustapha Azreg-Aïnou

2021 ◽  
Vol 65 (12) ◽  
pp. 1185-1193
Author(s):  
M. A. Bugaev ◽  
I. D. Novikov ◽  
S. V. Repin ◽  
A. A. Shelkovnikova

Abstract The problem of bending and scattering of light rays passing outside the entrance of a wormhole with zero gravitational mass is considered. The process of ray capture by a wormhole, as well as the formation process of a shadow when illuminated by a standard screen, is investigated. These mechanisms are also compared to the case of light ray motion in the vicinity of the Schwarzschild black hole.


Sign in / Sign up

Export Citation Format

Share Document