A data encryption scheme for cloud storage security

Author(s):  
Wei-nong Wu ◽  
Yuan-bing Zheng ◽  
Bin Wu ◽  
Lie Wu
2021 ◽  
Vol 23 (09) ◽  
pp. 1105-1121
Author(s):  
Dr. Ashish Kumar Tamrakar ◽  
◽  
Dr. Abhishek Verma ◽  
Dr. Vishnu Kumar Mishra ◽  
Dr. Megha Mishra ◽  
...  

Cloud computing is a new model for providing diverse services of software and hardware. This paradigm refers to a model for enabling on-demand network access to a shared pool of configurable computing resources, that can be rapidly provisioned and released with minimal service provider interaction .It helps the organizations and individuals deploy IT resources at a reduced total cost. However, the new approaches introduced by the clouds, related to computation outsourcing, distributed resources and multi-tenancy concept, increase the security and privacy concerns and challenges. It allows users to store their data remotely and then access to them at any time from any place .Cloud storage services are used to store data in ways that are considered cost saving and easy to use. In cloud storage, data are stored on remote servers that are not physically known by the consumer. Thus, users fear from uploading their private and confidential files to cloud storage due to security concerns. The usual solution to secure data is data encryption, which makes cloud users more satisfied when using cloud storage to store their data. Motivated by the above facts; we have proposed a solution to undertake the problem of cloud storage security. In cloud storage, there are public data that do not need any security measures, and there are sensitive data that need applying security mechanisms to keep them safe. In that context, data classification appears as the solution to this problem. The classification of data into classes, with different security requirements for each class is the best way to avoid under security and over security situation. The existing cloud storage systems use the same Journal of University of Shanghai for Science and Technology ISSN: 1007-6735 Volume 23, Issue 9, September – 2021 Page-1105 key size to encrypt all data without taking into consideration its confidentiality level. Treating the low and high confidential data with the same way and at the same security level will add unnecessary overhead and increase the processing time. In our proposal, we have combined the K-NN (K Nearest Neighbors) machine learning method and the goal programming decision-making method, to provide an efficient method for data classification. This method allows data classification according to the data owner security needs. Then, we introduce the user data to the suitable security mechanisms for each class. The use of our solution in cloud storage systems makes the data security process more flexible, besides; it increases the cloud storage system performance and decreases the needed resources, which are used to store the data.


2011 ◽  
Vol 55-57 ◽  
pp. 504-507
Author(s):  
Jian Hua Zhang ◽  
Nan Zhang ◽  
Chun Chang Fu

The storage security technology in cloud storage applications was analyzed, and in order to satisfied the demand for privacy protection, the key technology of data encryption and authentication are described and the methods of privacy protection in data mining under the cloud were discussed. At the same time, a hierarchical mechanism of authentication was proposed. These methods and mechanisms could solve the problem of privacy protection in a certain degree, and ensure the security of cloud storage.


2019 ◽  
Vol 16 (3) ◽  
pp. 797-813
Author(s):  
Qiuting Tian ◽  
Dezhi Han ◽  
Yanmei Jiang

With the development of cloud storage technology, data storage security has become increasingly serious. Aiming at the problem that existing attribute-based encryption schemes do not consider hierarchical authorities and the weight of attribute. A hierarchical authority based weighted attribute encryption scheme is proposed. This scheme will introduce hierarchical authorities and the weight of attribute into the encryption scheme, so that the authorities have a hierarchical relationship and different attributes have different importance. At the same time, the introduction of the concept of weight makes this scheme more flexible in the cloud storage environment and enables fine-grained access control. In addition, this scheme implements an online/offline encryption mechanism to improve the security of stored data. Security proof and performance analysis show that the scheme is safe and effective, and it can resist collusion attacks by many malicious users and authorization centers. It is more suitable for cloud storage environments than other schemes.


2014 ◽  
Vol 989-994 ◽  
pp. 2543-2546
Author(s):  
Peng Wang ◽  
Fu Zheng Zhang ◽  
Chun Lei Han

With the continuous expansion of the scale data storage, cloud storage technology for its high performance and low cost to get a lot of attention and support. However, the security issues of cloud storage data hinder its further promotion. For the current cloud storage applications of data stored encrypted, a cloud storage encryption scheme based on the separated key and encryption policy is proposed. By strengthening the data encryption key management and data encryption algorithm, the system achieves a more secure storage of data assurance in the technical level.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tonghao Yang ◽  
Junquan Li ◽  
Bin Yu

The secure destruction of expired data is one of the important contents in the research of cloud storage security. Applying the attribute-based encryption (ABE) and the distributed hash table (DHT) technology to the process of data destruction, we propose a secure ciphertext self-destruction scheme with attribute-based encryption called SCSD. In SCSD scheme, the sensitive data is first encrypted under an access key and then the ciphertext shares are stored in the DHT network along with the attribute shares. Meanwhile, the rest of the sensitive data ciphertext and the shares of access key ciphertext constitute the encapsulated self-destruction object (EDO), which is stored in the cloud. When the sensitive data is expired, the nodes in DHT networks can automatically discard the ciphertext shares and the attribute shares, which can make the ciphertext and the access key unrecoverable. Thus, we realize secure ciphertext self-destruction. Compared with the current schemes, our SCSD scheme not only can support efficient data encryption and fine-grained access control in lifetime and secure self-destruction after expiry, but also can resist the traditional cryptanalysis attack as well as the Sybil attack in the DHT network.


Sign in / Sign up

Export Citation Format

Share Document