SPONTANEOUS FISSION, CLUSTER RADIOACTIVITY AND ALPHA DECAY OF SUPERHEAVY NUCLEI 282,284Cn AND 286Lv

Author(s):  
D. N. Poenaru ◽  
R. A. Gherghescu
Author(s):  
H. C. Manjunatha ◽  
S. Alfred Cecil Raj ◽  
A. M. Nagaraja ◽  
N. Sowmya

Cluster radioactivity is an intermediate between alpha decay and spontaneous fission. It is also an exotic decay obtained in superheavy nuclei. When a cluster decay is detected in superheavy nuclei, the daughter nuclei is having near or equal to doubly magic nuclei. We have investigated cluster decay of isotopes of He, Li, Be, Ne, N, Mg, Si, P, S, Cl, Ar and Ca in the superhaevy nuclei region 299-306122. We have also compared the logarithmic half-lives of cluster decay with that of other models such as Univ [1], NRDX [2], UDL [3] and Horoi [4]. From this study it is concluded that  cluster decay of 4He, 22Ne, 26Mg, 28Si 30Si, 34S, 40Ca and 46Ca are having shorter logarithmic half-lives compared to exotic cluster decay modes.


2020 ◽  
Vol 29 (10) ◽  
pp. 2050087
Author(s):  
N. Sowmya ◽  
H. C. Manjunatha ◽  
P. S. Damodara Gupta

In this work, we have made an attempt to study the cluster-decay half-lives and alpha-decay half-lives of the superheavy nuclei [Formula: see text]Og by considering the temperature-dependent (TD) and also temperature-independent (TID) proximity potential model. The evaluated half-lives were compared with that of the experiments. To predict the decay modes, we have compared the cluster-decay half-lives and alpha-decay half-lives with that of spontaneous fission half-lives. This work also predicts the decay chains of the superheavy nuclei [Formula: see text]Og and finds an importance in the synthesis of further isotopes of superheavy element Oganesson.


2016 ◽  
Vol 31 (07) ◽  
pp. 1650045 ◽  
Author(s):  
Nithu Ashok ◽  
Deepthy Maria Joseph ◽  
Antony Joseph

Cluster radioactivity is a rare cold nuclear process which is intermediate between alpha decay and spontaneous fission. The present work is a theoretical investigation of the feasibility of alpha decay and cluster radioactivity from proton rich Osmium (Os) isotopes with mass number ranging from 162–190. Osmium forms a part of the transition region between highly deformed and spherical nuclei. Calculations have been done using unified fission model and Hartree–Fock–Bogoliubov (HFB) theory. We have chosen only those decays with half-lives falling in measurable range. Geiger–Nuttall plot has been successfully reproduced. The isotope which is most favorable to each decay mode has a magic daughter nucleus.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650100 ◽  
Author(s):  
H. C. Manjunatha

We have studied the [Formula: see text]-decay half-life and spontaneous fission half-lives of isotopes of superheavy element [Formula: see text] in the range [Formula: see text]. A comparison of calculated alpha half-lives with the literature [D. N. Poenaru, R. A. Gherghescu and W. Greiner, Phys. Rev. C 83 (2011) 014601, D. N. Poenaru, R. A. Gherghescu and W. Greiner, Phys. Rev. C 85 (2012) 034615] and the analytical formulas of Royer [G. Royer, J. Phys. G; Nucl. Part. Phys. 26 (2000) 1149] shows good agreement with each other. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by [C. Xu, Z. Ren and Y. Guo, Phys. Rev. C 78 (2008) 044329]. A comparative study on the competition of alpha decay versus spontaneous fission of superheavy nuclei (SHN) reveals that around eight isotopes ([Formula: see text]122) survive fission and have alpha decay channel as the prominent mode of decay and hold the possibility to be synthesized in the laboratory. The alpha decay half-lives and spontaneous fission half-lives of SHN with [Formula: see text], [Formula: see text]–306, with [Formula: see text], [Formula: see text]–300, and with [Formula: see text], [Formula: see text]–297 are also studied. The present study will be useful in the synthesis of superheavy elements [Formula: see text] by using the actinide based reactions with stable projectiles heavier than [Formula: see text]Ca.


1971 ◽  
Vol 26 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Jens Grumann ◽  
Tihomir Morovic ◽  
Walter Greiner

AbstractThe potential energy surface has been calculated by two methods which are compared with re­spect to spontaneous fission. In the first one essentially the sum of the single particle energies is computed as was done in a previous paper3 while in the second one the Strutinsky technique of renormalizing to a liquid drop model has been applied. Also the half-lives for electron capture are investigated together with the predictions of the half-lives for spontaneous fission and α-decay. The results support the existence of superheavy nuclei in the regions around Z = 114 and Z = 164.


2010 ◽  
Author(s):  
V. D. Rusov ◽  
S. Cht. Mavrodiev ◽  
D. S. Vlasenko ◽  
M. À. Deliyergiyev ◽  
Andrei Yu. Khrennikov

2018 ◽  
Vol 27 (05) ◽  
pp. 1850041 ◽  
Author(s):  
H. C. Manjunatha ◽  
N. Sowmya

It is important to study the different decay modes of superheavy nuclei such as spontaneous fission, ternary fission and cluster decay. We studied the spontaneous fission, ternary fission and cluster decay of predicted isotopes of superheavy nuclei [Formula: see text] and compared with that of alpha decay. This enables us to study the competition between spontaneous fission, ternary fission, cluster decay and alpha decay in the superheavy nuclei [Formula: see text]. We have studied the half-lives and decay constants of different decay modes. We have also studied the branching ratio of alpha decay with respect to other decay modes. This study reveals that alpha decay is the most dominant decay mode for the superheavy nuclei [Formula: see text] and hence these nuclei can be detected through the alpha decay mode only.


Sign in / Sign up

Export Citation Format

Share Document