bogoliubov theory
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Joseph C Smith ◽  
Seth T Rittenhouse ◽  
Ryan M Wilson ◽  
Brandon March Peden

Abstract We consider a BEC of rigid rotor molecules confined to quasi-2d through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole-dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develops an in-plane polarization leading to the emergence of a new global instability as the molecules “tilt”. The character of these instabilities is clarified by means of momentum-space density-density structure factors. A peak at zero momentum in the spin-spin structure factor for the in-plane component of the polarization indicates that the tilt instability is a global phonon-like instability.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
A. M. Grudinina ◽  
I. L. Kurbakov ◽  
Yu. E. Lozovik ◽  
N. S. Voronova

Author(s):  
Marco Falconi ◽  
Emanuela L. Giacomelli ◽  
Christian Hainzl ◽  
Marcello Porta

AbstractWe study the ground state properties of interacting Fermi gases in the dilute regime, in three dimensions. We compute the ground state energy of the system, for positive interaction potentials. We recover a well-known expression for the ground state energy at second order in the particle density, which depends on the interaction potential only via its scattering length. The first proof of this result has been given by Lieb, Seiringer and Solovej (Phys Rev A 71:053605, 2005). In this paper, we give a new derivation of this formula, using a different method; it is inspired by Bogoliubov theory, and it makes use of the almost-bosonic nature of the low-energy excitations of the systems. With respect to previous work, our result applies to a more regular class of interaction potentials, but it comes with improved error estimates on the ground state energy asymptotics in the density.


Author(s):  
Eun Jin In ◽  
Panagiota Papakonstantinou ◽  
Youngman Kim ◽  
Seung-Woo Hong

The location of the neutron drip line, currently known for only the lightest elements, remains a fundamental question in nuclear physics. Its description is a challenge for microscopic nuclear energy density functionals, as it must take into account in a realistic way not only the nuclear potential, but also pairing correlations, deformation effects and coupling to the continuum. The recently developed deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) includes all three aforementioned effects in the description of nuclei throughout the nuclear chart. Here, the DRHBc with the successful density functional PC-PK1 is used to investigate whether and how deformation influences the prediction for the neutron drip-line location for even–even nuclei with [Formula: see text], where many isotopes are predicted deformed. The results are compared with those based on the spherical relativistic continuum Hartree–Bogoliubov (RCHB) theory and discussed in terms of shape evolution and the variational principle. It is found that the Ne and Ar drip-line nuclei are different after the deformation effect is included. The direction of the change is not necessarily towards an extended drip line, but rather depends on the evolution of the degree of deformation towards the drip line. Deformation effects as well as pairing and continuum effects treated in a consistent way can affect critically the theoretical description of the neutron drip-line location.


Sign in / Sign up

Export Citation Format

Share Document