Binomial Coefficients and Multinomial Coefficients

10.37236/560 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Xun-Tuan Su ◽  
Yi Wang ◽  
Yeong-Nan Yeh

In this note we consider unimodality problems of sequences of multinomial coefficients and symmetric functions. The results presented here generalize our early results for binomial coefficients. We also give an answer to a question of Sagan about strong $q$-log-concavity of certain sequences of symmetric functions, which can unify many known results for $q$-binomial coefficients and $q$-Stirling numbers of two kinds.


2010 ◽  
Vol 83 (1) ◽  
pp. 138-157
Author(s):  
GEORGE M. BERGMAN

AbstractErdős and Szekeres [‘Some number theoretic problems on binomial coefficients’, Aust. Math. Soc. Gaz.5 (1978), 97–99] showed that for any four positive integers satisfying m1+m2=n1+n2, the two binomial coefficients (m1+m2)!/m1!m2! and (n1+n2)!/n1!n2! have a common divisor greater than 1. The analogous statement for k-element families of k-nomial coefficients (k>1) was conjectured in 1997 by David Wasserman.Erdős and Szekeres remark that if m1,m2,n1,n2 as above are all greater than 1, there is probably a lower bound on the common divisor in question which goes to infinity as a function of m1 +m2 . Such a bound is obtained in Section 2.The remainder of this paper is devoted to proving results that narrow the class of possible counterexamples to Wasserman’s conjecture.


Author(s):  
Abdulkarim Magomedov ◽  
S.A. Lavrenchenko

New laconic proofs of two classical statements of combinatorics are proposed, computational aspects of binomial coefficients are considered, and examples of their application to problems of elementary mathematics are given.


2020 ◽  
Vol 70 (6) ◽  
pp. 1521-1537
Author(s):  
Feng Qi ◽  
Omran Kouba ◽  
Issam Kaddoura

AbstractIn the paper, employing methods and techniques in analysis and linear algebra, the authors find a simple formula for computing an interesting Hessenberg determinant whose elements are products of binomial coefficients and falling factorials, derive explicit formulas for computing some special Hessenberg and tridiagonal determinants, and alternatively and simply recover some known results.


1936 ◽  
Vol 15 (1) ◽  
pp. 141-176
Author(s):  
Duncan C. Fraser

SynopsisThe paper is intended as an elementary introduction and companion to the paper on “Orthogonal Polynomials,” by G. J. Lidstone, J.I.A., vol. briv., p. 128, and the paper on the “Sum and Integral of the Product of Two Functions,” by A. W. Joseph, J.I.A., vol. lxiv., p. 329; and also to Dr. Aitken's paper on the “Graduation of Data by the Orthogonal Polynomials of Least Squares,” Proc. Roy. Soc. Edin., vol. liii., p. 54.Following Dr. Aitken Σux is defined for the immediate purpose to be u0+…+ux−1.The scheme of successive summations is set out in the form of a difference diagram and is extended to negative arguments. The special point to which attention is drawn is the existence of a wedge of zeros between the sums for positive arguments and those for negative arguments.The rest of the paper is for the greater part a study of the table of binomial coefficients for positive and for negative arguments. The Tchebychef polynomials are simple functions of the binomial coefficients, and after a description of a particular example and of its properties general methods are given of forming the polynomials by means of tables of differences. These tables furnish examples of simple, differences, of divided differences, of adjusted differences, and of a system of special adjusted differences which gives a very easy scheme for the formation of the Tchebychef polynomials.


Sign in / Sign up

Export Citation Format

Share Document