scholarly journals Unimodality Problems of Multinomial Coefficients and Symmetric Functions

10.37236/560 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Xun-Tuan Su ◽  
Yi Wang ◽  
Yeong-Nan Yeh

In this note we consider unimodality problems of sequences of multinomial coefficients and symmetric functions. The results presented here generalize our early results for binomial coefficients. We also give an answer to a question of Sagan about strong $q$-log-concavity of certain sequences of symmetric functions, which can unify many known results for $q$-binomial coefficients and $q$-Stirling numbers of two kinds.

2019 ◽  
Vol 15 (09) ◽  
pp. 1827-1855 ◽  
Author(s):  
Min Qiu ◽  
Shaofang Hong

Let [Formula: see text] and [Formula: see text] be positive integers. We denote by [Formula: see text] the 2-adic valuation of [Formula: see text]. The Stirling numbers of the first kind, denoted by [Formula: see text], count the number of permutations of [Formula: see text] elements with [Formula: see text] disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the study of the [Formula: see text]-adic valuations of [Formula: see text]. In this paper, by introducing the concept of [Formula: see text]th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of [Formula: see text]. We also prove that [Formula: see text] holds for all integers [Formula: see text] between 1 and [Formula: see text]. As a corollary, we show that [Formula: see text] if [Formula: see text] is odd and [Formula: see text]. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if [Formula: see text], then [Formula: see text] and [Formula: see text], where [Formula: see text] stands for the [Formula: see text]th elementary symmetric functions of [Formula: see text]. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


10.37236/2131 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Pietro Mongelli

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obtain new combinatorial  interpretations of the Jacobi-Stirling and Legendre-Stirling numbers.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1436
Author(s):  
Talha Usman ◽  
Mohd Saif ◽  
Junesang Choi

The q-Stirling numbers (polynomials) of the second kind have been investigated and applied in a variety of research subjects including, even, the q-analogue of Bernstein polynomials. The (p,q)-Stirling numbers (polynomials) of the second kind have been studied, particularly, in relation to combinatorics. In this paper, we aim to introduce new (p,q)-Stirling polynomials of the second kind which are shown to be fit for the (p,q)-analogue of Bernstein polynomials. We also present some interesting identities involving the (p,q)-binomial coefficients. We further discuss certain vanishing identities associated with the q-and (p,q)-Stirling polynomials of the second kind.


10.37236/3787 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Claudio de J. Pita-Ruiz V.

We work with a generalization of Stirling numbers of the second kind related to the boson normal ordering problem (P. Blasiak et al.). We show that these numbers appear as part of the coefficients of expressions in which certain sequences of products of binomials, together with their partial sums, are written as linear combinations of some other binomials. We show that the number arrays formed by these coefficients can be seen as natural generalizations of Pascal and Lucas triangles, since many of the known properties on rows, columns, falling diagonals and rising diagonals in Pascal and Lucas triangles, are also valid (some natural generalizations of them) in the arrays considered in this work. We also show that certain closed formulas for hyper-sums of powers of binomial coefficients appear in a natural way in these arrays.


10.37236/5913 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Lily Li Liu ◽  
Ya-Nan Li

Let $[T(n,k)]_{n,k\geqslant0}$ be a triangle of positive numbers satisfying the three-term recurrence relation\[T(n,k)=(a_1n+a_2k+a_3)T(n-1,k)+(b_1n+b_2k+b_3)T(n-1,k-1).\]In this paper, we give a new sufficient condition for linear transformations\[Z_n(q)=\sum_{k=0}^{n}T(n,k)X_k(q)\]that preserves the strong $q$-log-convexity of polynomials sequences. As applications, we show linear transformations, given by matrices of the binomial coefficients, the Stirling numbers of the first kind and second kind, the Whitney numbers of the first kind and second kind, preserving the strong $q$-log-convexity in a unified manner.


Author(s):  
David M. Kahn ◽  
Jan Hoffmann

AbstractAutomatic amortized resource analysis (AARA) is a type-based technique for inferring concrete (non-asymptotic) bounds on a program’s resource usage. Existing work on AARA has focused on bounds that are polynomial in the sizes of the inputs. This paper presents and extension of AARA to exponential bounds that preserves the benefits of the technique, such as compositionality and efficient type inference based on linear constraint solving. A key idea is the use of the Stirling numbers of the second kind as the basis of potential functions, which play the same role as the binomial coefficients in polynomial AARA. To formalize the similarities with the existing analyses, the paper presents a general methodology for AARA that is instantiated to the polynomial version, the exponential version, and a combined system with potential functions that are formed by products of Stirling numbers and binomial coefficients. The soundness of exponential AARA is proved with respect to an operational cost semantics and the analysis of representative example programs demonstrates the effectiveness of the new analysis.


Sign in / Sign up

Export Citation Format

Share Document