Convergence theorems and the Lebesgue integral

As discussed in the previous chapter, the fundamental theories of measure and Lebesgue integration are the prerequisites for the formalization of probability theory in higher-order logic. The scope of this chapter is primarily the formalization of these foundations. Both formalizations of measure theory and Lebesgue integral (Mhamdi, Hasan, & Tahar, 2011), presented in this chapter, are based on the extended-real numbers. This allows us to define sigma-finite and even infinite measures and handle extended-real-valued measurable functions. It also allows us to verify the properties of the Lebesgue integral and its convergence theorems for arbitrary functions. Therefore, the chapter begins with a description of the formalization of extended real numbers.


2018 ◽  
Vol 7 (2) ◽  
pp. 8
Author(s):  
KUMAR DAS APURVA ◽  
DHAR DIWAN SHAILESH ◽  
DASHPUTRE SAMIR ◽  
◽  
◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Preeyalak Chuadchawna ◽  
Ali Farajzadeh ◽  
Anchalee Kaewcharoen

Abstract In this paper, we discuss the Δ-convergence and strong convergence for the iterative sequence generated by the proposed scheme to approximate a common fixed point of a total asymptotically nonexpansive single-valued mapping and a quasi nonexpansive multi-valued mapping in a complete uniformly convex hyperbolic space. Finally, by giving an example, we illustrate our result.


Author(s):  
Jun Li ◽  
Radko Mesiar ◽  
Yao Ouyang ◽  
Adam Šeliga
Keyword(s):  

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Carlo Bardaro ◽  
Ilaria Mantellini ◽  
Gumrah Uysal ◽  
Basar Yilmaz

AbstractIn this paper we introduce a general class of integral operators that fix exponential functions, containing several recent modified operators of Gauss–Weierstrass, or Picard or moment type operators. Pointwise convergence theorems are studied, using a Korovkin-type theorem and a Voronovskaja-type formula is obtained.


Sign in / Sign up

Export Citation Format

Share Document