scholarly journals A Class of Integral Operators that Fix Exponential Functions

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Carlo Bardaro ◽  
Ilaria Mantellini ◽  
Gumrah Uysal ◽  
Basar Yilmaz

AbstractIn this paper we introduce a general class of integral operators that fix exponential functions, containing several recent modified operators of Gauss–Weierstrass, or Picard or moment type operators. Pointwise convergence theorems are studied, using a Korovkin-type theorem and a Voronovskaja-type formula is obtained.

Author(s):  
Başar Yilmaz

In here, we use modi…ed Gauss-Weierstrass operators and givesome approximation results in the exponential weighted Lp spaces. Theseoperators are reproduce not only 1 but also a certain exponential functions.Forthis purpose, …rstly we consider modi…ed Gauss-Weierstrass integral operatorsfrom exponentially weighted Lp;a (R) into Lp;2a (R) spaces. Then, we give rate of convergence of the operators in Lp;2a (R) : Also, we prove the convergence of operators in the exponential weighted Lp;2a (R) spaces using the Korovkin type theorem. Finally, we give pointwise convergence of the operators at a generalized Lebesgue point.


2005 ◽  
Vol 42 (2) ◽  
pp. 235-252
Author(s):  
Octavian Agratini

In the present paper we define a general class Bn,a, a =1, of Durrmeyer-Bézier type of linear positive operators. Our main aim is to estimate the rate of pointwise convergence for functions f at those points x at which the one-sided limits f(x+) and f(x-) exist. As regards these functions defined on an interval J certain conditions are required. We discuss two distinct cases: Int (J)=(0,8) and Int (J)=(0,1).


2008 ◽  
Vol 15 (1) ◽  
pp. 77-86
Author(s):  
Harun Karsli

Abstract In the present paper we obtain both the pointwise convergence and the rate of pointwise convergence theorems of a class of operators defined by as (𝑥,λ) → (𝑥0,λ 0) in 𝐿1 〈𝑎,𝑏〉, where 〈𝑎,𝑏〉 is an arbitrary interval in 𝑅. Here λ ∈ Λ and Λ is a nonempty set of indices.


2017 ◽  
Vol 102 (116) ◽  
pp. 203-209
Author(s):  
M. Mursaleen

Aktu?lu and Gezer [1] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. Recently, Kaya and G?n?l [11] proved some analogs of the Korovkin approximation theorem via lacunary equistatistical convergence by using test functions 1, x/1+x, y/1+y, (x/1+x)2 +(y/1+y)2. We apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem for functions of two variables by using test functions 1, x/1?x, y/1?y, (x/1?x)2+(y/1?y)2.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gümrah Uysal

<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id="M1">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id="M2">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R} _{0}^{+} $\end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Oh Sang Kwon ◽  
Nak Eun Cho

The purpose of the present paper is to investigate some subordination- and superordination-preserving properties of certain integral operators defined on the space of meromorphic functions in the punctured open unit disk. The sandwich-type theorem for these integral operators is also considered.


Sign in / Sign up

Export Citation Format

Share Document