THE SOLUTION OF COSMOLOGICAL CONSTANT PROBLEM BY DISCRETE SPACE-TIME AT ELECTROWEAK SCALE

Author(s):  
H. M. MOK
2011 ◽  
Vol 03 ◽  
pp. 195-202
Author(s):  
M. D. MAIA

The concept of deformation of Riemannian geometry is reviewed, with applications to gravitation and cosmology. Starting with an analysis of the cosmological constant problem, it is shown that space-times are deformable in the sense of local change of shape. These deformations leave an observable signature in the space-time, characterized by a conserved tensor, associated with a tangent acceleration, defined by the extrinsic curvature of the space-time. In the applications to cosmology, we find that the accelerated expansion of the universe is the observable effect of the deformation, dispensing with the cosmological constant and its problems.


2011 ◽  
Vol 26 (22) ◽  
pp. 3813-3820 ◽  
Author(s):  
M. D. MAIA

The concept of deformation of Riemannian geometry is reviewed, with applications to gravitation and cosmology. Starting with an analysis of the cosmological constant problem, it is shown that space-times are deformable in the sense of local change of shape. These deformations leave an observable signature in the space-time, characterized by a conserved tensor, associated with a tangent acceleration, defined by the extrinsic curvature of the space-time. In the applications to cosmology, we find that the accelerated expansion of the universe is the observable effect of the deformation, dispensing with the cosmological constant and its problems.


2010 ◽  
Vol 25 (26) ◽  
pp. 4875-4887 ◽  
Author(s):  
T. BANKS

I briefly review the theory of holographic space–time and its relation to the cosmological constant problem, and the breaking of supersymmetry (SUSY). When combined with some simple phenomenological requirements, these ideas lead to a fairly unique model for Tera-scale physics, which implies direct gauge mediation of SUSY breaking and a model for dark matter as a hidden sector baryon, with nonzero magnetic dipole moment.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 358
Author(s):  
Roberto Casadio ◽  
Andrea Giusti

Bootstrapped Newtonian gravity was developed with the purpose of estimating the impact of quantum physics in the nonlinear regime of the gravitational interaction, akin to corpuscular models of black holes and inflation. In this work, we set the ground for extending the bootstrapped Newtonian picture to cosmological spaces. We further discuss how such models of quantum cosmology can lead to a natural solution to the cosmological constant problem.


Sign in / Sign up

Export Citation Format

Share Document