ON THE SIMPLICITY AND SPEED OF PROGRAMS FOR COMPUTING INFINITE SETS OF NATURAL NUMBERS

Author(s):  
GREGORY J. CHAITIN
1975 ◽  
Vol 20 (1) ◽  
pp. 38-45
Author(s):  
J. L Hickman

We sometimes think of medial (that is, infinite Dedekind-finite) sets as being “small” infinite sets. Medial cardinals can be defined as those cardinals that are incomparable to ℵℴ; hence we tend to think of them as being spread out on a plane “just above” the natural numbers, which seems to lend support to the view expressed above that medial sets are “small”.


2015 ◽  
Vol 67 (4) ◽  
pp. 795-809 ◽  
Author(s):  
Mauro Di Nasso ◽  
Isaac Goldbring ◽  
Renling Jin ◽  
Steven Leth ◽  
Martino Lupini ◽  
...  

AbstractErdős conjectured that for any set A ⊆ ℕ with positive lower asymptotic density, there are infinite sets B;C ⊆ ℕ such that B + C ⊆ A. We verify Erdős’ conjecture in the case where A has Banach density exceeding ½ . As a consequence, we prove that, for A ⊆ ℕ with positive Banach density (amuch weaker assumption than positive lower density), we can find infinite B;C ⊆ ℕ such that B+C is contained in the union of A and a translate of A. Both of the aforementioned results are generalized to arbitrary countable amenable groups. We also provide a positive solution to Erdős’ conjecture for subsets of the natural numbers that are pseudorandom.


1978 ◽  
Vol 43 (1) ◽  
pp. 135-138 ◽  
Author(s):  
Stephen G. Simpson

Let A be a subset of ω, the set of natural numbers. The degree of A is its degree of recursive unsolvability. We say that A is rich if every degree above that of A is represented by a subset of A. We say that A is poor if no degree strictly above that of A is represented by a subset of A. The existence of infinite poor (and hence nonrich) sets was proved by Soare [9].Theorem 1. Suppose that A is infinite and not rich. Then every hyperarith-metical subset H of ω is recursive in A.In the special case when H is arithmetical, Theorem 1 was proved by Jockusch [4] who employed a degree-theoretic analysis of Ramsey's theorem [3]. In our proof of Theorem 1 we employ a similar, degree-theoretic analysis of a certain generalization of Ramsey's theorem. The generalization of Ramsey's theorem is due to Nash-Williams [6]. If A ⊆ ω we write [A]ω for the set of all infinite subsets of A. If P ⊆ [ω]ω we let H(P) be the set of all infinite sets A such that either [A]ω ⊆ P = ∅. Nash-Williams' theorem is essentially the statement that if P ⊆ [ω]ω is clopen (in the usual, Baire topology on [ω]ω) then H(P) is nonempty. Subsequent, further generalizations of Ramsey's theorem were proved by Galvin and Prikry [1], Silver [8], Mathias [5], and analyzed degree-theoretically by Solovay [10]; those results are not needed for this paper.


Kybernetes ◽  
2008 ◽  
Vol 37 (3/4) ◽  
pp. 453-457 ◽  
Author(s):  
Wujia Zhu ◽  
Yi Lin ◽  
Guoping Du ◽  
Ningsheng Gong

PurposeThe purpose is to show that all uncountable infinite sets are self‐contradictory non‐sets.Design/methodology/approachA conceptual approach is taken in the paper.FindingsGiven the fact that the set N={x|n(x)} of all natural numbers, where n(x)=df “x is a natural number” is a self‐contradicting non‐set in this paper, the authors prove that in the framework of modern axiomatic set theory ZFC, various uncountable infinite sets are either non‐existent or self‐contradicting non‐sets. Therefore, it can be astonishingly concluded that in both the naive set theory or the modern axiomatic set theory, if any of the actual infinite sets exists, it must be a self‐contradicting non‐set.Originality/valueThe first time in history, it is shown that such convenient notion as the set of all real numbers needs to be reconsidered.


2021 ◽  
Author(s):  
Shee-Ping Chen

Abstract Georg Cantor defined countable and uncountable sets for infinite sets. The set of natural numbers is defined as a countable set, and the set of real numbers is proved to be uncountable by Cantor’s diagonal argument. Most scholars accept that it is impossible to construct a bijection between the set of natural numbers and the set of real numbers. However, the way to construct a bijection between the set of natural numbers and the set of real numbers is proposed in this paper. The set of real numbers can be proved to be countable by Cantor’s definition. Cantor’s diagonal argument is challenged because it also can prove the set of natural numbers to be uncountable. The process of argumentation provides us new perspectives to consider about the size of infinite sets.


1972 ◽  
Vol 37 (2) ◽  
pp. 268-280 ◽  
Author(s):  
Carl G. Jockusch

Let N be the set of natural numbers. If A ⊆ N, let [A]n denote the class of all n-element subsets of A. If P is a partition of [N]n into finitely many classes C1, …, Cp, let H(P) denote the class of those infinite sets A ⊆ N such that [A]n ⊆ Ci for some i. Ramsey's theorem [8, Theorem A] asserts that H(P) is nonempty for any such partition P. Our purpose here is to study what can be said about H(P) when P is recursive, i.e. each Ci, is recursive under a suitable coding of [N]n. We show that if P is such a recursive partition of [N]n, then H(P) contains a set which is Πn0 in the arithmetical hierarchy. In the other direction we prove that for each n ≥ 2 there is a recursive partition P of [N]n into two classes such that H(P) contains no Σn0 set. These results answer a question raised by Specker [12].A basic partition is a partition of [N]2 into two classes. In §§2, 3, and 4 we concentrate on basic partitions and in so doing prepare the way for the general results mentioned above. These are proved in §5. Our “positive” results are obtained by effectivizing proofs of Ramsey's theorem which differ from the original proof in [8]. We present these proofs (of which one is a generalization of the other) in §§4 and 5 in order to clarify the motivation of the effective versions.


2015 ◽  
Vol 8 (2) ◽  
pp. 370-410 ◽  
Author(s):  
PAOLO MANCOSU

AbstractIn a recent article (Mancosu, 2009), I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign ‘sizes’ to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a setAis properly included inBthen the numerosity ofAis strictly less than the numerosity ofB. Numerosity assignments differ from the standard assignment of size provided by Cantor’s cardinality assignments. In this paper I generalize some worries, raised by Richard Heck, emerging from the theory of numerosities to a line of thought resulting in what I call a ‘good company’ objection to Hume’s Principle (HP). The paper is centered around five main parts. The first (§3) takes a historical look at nineteenth-century attributions of equality of numbers in terms of one-one correlation and argues that there was no agreement as to how to extend such determinations to infinite sets of objects. This leads to the second part (§4) where I show that there are countably-infinite many abstraction principles that are ‘good’, in the sense that they share the same virtues of HP (or so I claim) and from which we can derive the axioms of second-order arithmetic. All the principles I present agree with HP in the assignment of numbers to finite concepts but diverge from it in the assignment of numbers to infinite concepts. The third part (§5) connects this material to a debate on Finite Hume’s Principle between Heck and MacBride. The fourth part (§6) states the ‘good company’ objection as a generalization of Heck’s objection to the analyticity of HP based on the theory of numerosities. In the same section I offer a taxonomy of possible neo-logicist responses to the ‘good company’ objection. Finally, §7 makes a foray into the relevance of this material for the issue of cross-sortal identifications for abstractions.


1984 ◽  
Vol 49 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Douglas Cenzer

AbstractLet A and B be subsets of the space 2N of sets of natural numbers. A is said to be Wadge reducible to B if there is a continuous map Φ from 2N into 2N such that A = Φ−1 (B); A is said to be monotone reducible to B if in addition the map Φ is monotone, that is, a ⊂ b implies Φ(a) ⊂ Φ(b). The set A is said to be monotone if a ∈ A and a ⊂ b imply b ∈ A. For monotone sets, it is shown that, as for Wadge reducibility, sets low in the arithmetical hierarchy are nicely ordered. The sets are all reducible to the ( but not ) sets, which are in turn all reducible to the strictly sets, which are all in turn reducible to the strictly sets. In addition, the nontrivial sets all have the same degree for n ≤ 2. For Wadge reducibility, these results extend throughout the Borel hierarchy. In contrast, we give two natural strictly monotone sets which have different monotone degrees. We show that every monotone set is actually positive. We also consider reducibility for subsets of the space of compact subsets of 2N. This leads to the result that the finitely iterated Cantor-Bendixson derivative Dn is a Borel map of class exactly 2n, which answers a question of Kuratowski.


2021 ◽  
Author(s):  
ANDRÉ LUIZ BARBOSA

Abstract The Hilbert's Hotel is a hotel with countably infinitely many rooms. The size of its hypothetical computer was the pretext in order to think about whether it makes sense and what would be log_2(\aleph_0). Thus, at the road of this journey, this little paper demonstrates – surprisingly – that there exist countably infinite sets strictly smaller than \mathbb{N} (the natural numbers), with very elementary mathematics, so shockingly stating the inconsistency of the Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC)


Sign in / Sign up

Export Citation Format

Share Document