Quantifying the Generation Process of Multi-Level Tactile Sensations via ERP Component Investigation

Author(s):  
Yuan Liu ◽  
Wenjie Wang ◽  
Weiguo Xu ◽  
Qian Cheng ◽  
Dong Ming

Humans obtain characteristic information such as texture and weight of external objects, relying on the brain’s integration and classification of tactile information; however, the decoding mechanism of multi-level tactile information is relatively elusive from the temporal sequence. In this paper, nonvariant frequency, along with the variant pulse width of electrotactile stimulus, was performed to generate multi-level pressure sensation. Event-related potentials (ERPs) were measured to investigate the mechanism of whole temporal tactile processing. Five ERP components, containing P100–N140–P200–N200–P300, were observed. By establishing the relationship between stimulation parameters and ERP component amplitudes, we found the following: (1) P200 is the most significant component for distinguishing multi-level tactile sensations; (2) P300 is correlated well with the subjective judgment of tactile sensation. The temporal sequence of brain topographies was implemented to clarify the spatiotemporal characteristics of the tactile process, which conformed to the serial processing model in neurophysiology and cortical network response area described by fMRI. Our results can help further clarify the mechanism of tactile sequential processing, which can be applied to improve the tactile BCI performance, sensory enhancement, and clinical diagnosis for doctors to evaluate the tactile process disorders by examining the temporal ERP components.

2011 ◽  
Vol 38 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Zhi-Hua HUANG ◽  
Ming-Hong LI ◽  
Yuan-Ye MA ◽  
Chang-Le ZHOU

2016 ◽  
Vol 36 (1) ◽  
pp. 292-301
Author(s):  
C. Papaodysseus ◽  
S. Zannos ◽  
F. Giannopoulos ◽  
D. Arabadjis ◽  
P. Rousopoulos ◽  
...  

NeuroImage ◽  
2011 ◽  
Vol 55 (2) ◽  
pp. 514-521 ◽  
Author(s):  
Andres H. Neuhaus ◽  
Florin C. Popescu ◽  
Cristian Grozea ◽  
Eric Hahn ◽  
Constanze Hahn ◽  
...  

Author(s):  
Kerime Dilsad Cicek ◽  
Oguz Bayat ◽  
Osman Nuri Ucan ◽  
Adil Deniz Duru

1994 ◽  
Vol 77 (3) ◽  
pp. 1246-1255 ◽  
Author(s):  
E. Bloch-Salisbury ◽  
A. Harver

Resistive and elastic loads added to inspiration are readily detected, and detection latencies vary as a function of load magnitude and load type. In the present study, we recorded endogenous event-related potentials (i.e., N2 and P3) to the detection and classification of large (15.0 cmH2O.1–1.s and 70.0 cmH2O/l) and small (1.45 cmH2O.1–1.s and 19.0 cmH2O/l) loads equated for subjective magnitude in 14 men (mean age 21.14 yr). In blocks of trials comprised of either large or small loads, subjects made a button-press response upon detecting a load and then classified the load as resistive or elastic. Loads were presented briefly (for approximately 200 ms) early in inspiration and at the same level of inspiratory pressure. For loads of comparable magnitude, subjects detected equivalent numbers of resistive and elastic loads but could not discriminate reliably between load types. On the other hand, the latency of N2 was shorter to larger than to smaller loads, to resistive than to elastic loads, and to correct than to incorrect load classifications. The latency of P3 was affected similarly by load magnitude and load type. These findings demonstrate that event-related potentials are elicited by brief presentations of resistive and elastic loads and that N2 and P3 latencies vary reliably as a function of load magnitude and load type. Most importantly, event-related potential latencies are sensitive to load type and to classification accuracy even when resistive and elastic loads are not distinguishable subjectively.


Sign in / Sign up

Export Citation Format

Share Document