parametric classification
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 13 (6) ◽  
pp. 3416
Author(s):  
Francesca Pagliara ◽  
Filomena Mauriello ◽  
Yin Ping

High-speed rail (HSR) and tourism are closely related activities since improved mobility is perceived to facilitate tourist behavioral changes. The interest in research is very high and this contribution tries to provide an insight into this topic by making a comparison between the estimation of the parametric Generalized Estimating Equation (GEE) approaches with the non-parametric Classification and Regression Tree (CART). A dataset containing information both on tourism and transport for thirty Chinese provinces, during the 2001–2017 period, has been collected. The finding of this paper shows that the presence of HSR has value in the explanation of tourist arrivals.


2020 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Annamaria Castrignanò ◽  
Antonella Belmonte ◽  
Ilaria Antelmi ◽  
Ruggiero Quarto ◽  
Francesco Quarto ◽  
...  

Xylella fastidiosa subsp. pauca (Xfp) is one of the most dangerous plant pathogens in the world. Identified in 2013 in olive trees in south–eastern Italy, it is spreading to the Mediterranean countries. The bacterium is transmitted by insects that feed on sap, and causes rapid wilting in olive trees. The paper explores the use of Unmanned Aerial Vehicle (UAV) in combination with a multispectral radiometer for early detection of infection. The study was carried out in three olive groves in the Apulia region (Italy) and involved four drone flights from 2017 to 2019. To classify Xfp severity level in olive trees at an early stage, a combined method of geostatistics and discriminant analysis was implemented. The results of cross-validation for the non-parametric classification method were of overall accuracy = 0.69, mean error rate = 0.31, and for the early detection class of accuracy 0.77 and misclassification probability 0.23. The results are promising and encourage the application of UAV technology for the early detection of Xfp infection.


2020 ◽  
Vol 12 (20) ◽  
pp. 3325
Author(s):  
Audrey P. Riddell ◽  
Stephen A. Fitzgerald ◽  
Chu Qi ◽  
Bogdan M. Strimbu

Forest species classifications are becoming increasingly automated as advances are made in machine learning. Complex algorithms can reach high accuracies, but are not always suitable for small-scale classifications, which may benefit from simpler conventional methods. The goal of this classification was to identify contiguous stands of ponderosa pine (Pinus ponderosa Douglas ex Lawson) against a mix of forest and non-forest background in the southern Willamette Valley, Oregon. The study area is approximately 816,600 ha, considerably larger than most study areas used for presenting techniques for tree species classification. To achieve the objective, we used two classification procedures, one parametric and one non-parametric. For the parametric method, we selected the maximum likelihood (ML) algorithm, whereas for the non-parametric method we chose the random forest (RF) algorithm. To identify ponderosa pine, we used 1 m spatial resolution red-green-blue-infrared (RGBI) aerial images supplied by the U.S. National Agriculture Imagery Program (NAIP) and 1 m spatial resolution canopy height models (CHMs) provided by the Oregon Department of Geology and Mineral Industries (DOGAMI). We tested four data variations for each method: Aerial imagery, CHM-masked aerial imagery, aerial imagery with an additional CHM band, and CHM-masked aerial imagery with a CHM band. The parametric classifications of aerial imagery alone reached an average kappa coefficient of 0.29, which increased to 0.51 when masked with CHM data. The incorporation of CHM data as a fifth band resulted in a similar improvement in kappa (0.47), but the most effective parametric method was the incorporation of CHM data as both a fifth band and a post-classification mask, resulting in a kappa coefficient of 0.89. The non-parametric classification of aerial imagery achieved a mean validation kappa coefficient of 0.85 collectively and 0.90 individually, which only increased by approximately 0.01 or less when the CHM masks were applied. The addition of the CHM band increased the kappa value to 0.91 for both individual and collective tile classifications. The highest kappa of all methods was achieved through five-band non-parametric classification with the addition of the CHM band (0.94) for both collective and individual classifications. Our results suggest that parametric methods, when enhanced with a CHM mask, could be suitable for large-area, small-scale classifications based on RGBI imagery, but a non-parametric classification of fused spectral and height data will generally achieve the highest accuracy for large, unbalanced datasets.


2020 ◽  
pp. 224-232
Author(s):  
Indira Karymsakova ◽  
Natalya Denissova ◽  
Saule Kumargazhanova ◽  
Iurii Krak

The problem of a robotic system creating for plasma spraying of biocompatible coatings on complex shaped implants based on a Fanuc LR Mate 200 id manipulation robot and modeling spraying trajectories using a virtual simulator Roboguide V6.40 is considered. Parametric classification of implants is carried out whenever possible by plasma spraying using robotic devices. The main procedures for implants preparation for spraying were investigated. The 3D UNIVERSE scanner is used for scanning the implant and building its spatial model, the 3D model of the implant is being developed in Geomagic Design X. To build the manipulator program movements taking into account the speed of movement, it is proposed to use fourth order splines, which is built in the Matlab tools with finding of the optimal close spline to the original values. As the example of Cox femoral joint implant, a simulation of robot motion is performed using a virtual simulator Roboguide V6.40 with the possibility of transferring the program to a real Fanuc LR Mate 200 id robot.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 286 ◽  
Author(s):  
Hamid Saadatfar ◽  
Samiyeh Khosravi ◽  
Javad Hassannataj Joloudari ◽  
Amir Mosavi ◽  
Shahaboddin Shamshirband

The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.


Sign in / Sign up

Export Citation Format

Share Document