ASYMPTOTIC HYPERSTABILITY OF A CLASS OF NEURAL NETWORKS

1999 ◽  
Vol 09 (02) ◽  
pp. 95-98 ◽  
Author(s):  
ANKE MEYER-BÄSE

This paper is concerned with the asymptotic hyperstability of recurrent neural networks. We derive based on the stability results necessary and sufficient conditions for the network parameters. The results we achieve are more general than those based on Lyapunov methods, since they provide milder constraints on the connection weights than the conventional results and do not suppose symmetry of the weights.

2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2008 ◽  
Vol 21 (3) ◽  
pp. 309-325 ◽  
Author(s):  
Yury Farkov

This paper gives a review of multiresolution analysis and compactly sup- ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the partition of unity property, the linear independence, the stability, and the orthonormality of 'integer shifts' of the corresponding refinable functions are considered. Necessary and sufficient conditions are given for refinable functions to generate a multiresolution analysis in the L2-spaces on Vilenkin groups. Several examples are provided to illustrate these results. .


1998 ◽  
Vol 30 (1) ◽  
pp. 181-196 ◽  
Author(s):  
P. S. Griffin ◽  
R. A. Maller

Let Tr be the first time at which a random walk Sn escapes from the strip [-r,r], and let |STr|-r be the overshoot of the boundary of the strip. We investigate the order of magnitude of the overshoot, as r → ∞, by providing necessary and sufficient conditions for the ‘stability’ of |STr|, by which we mean that |STr|/r converges to 1, either in probability (weakly) or almost surely (strongly), as r → ∞. These also turn out to be equivalent to requiring only the boundedness of |STr|/r, rather than its convergence to 1, either in the weak or strong sense, as r → ∞. The almost sure characterisation turns out to be extremely simple to state and to apply: we have |STr|/r → 1 a.s. if and only if EX2 < ∞ and EX = 0 or 0 < |EX| ≤ E|X| < ∞. Proving this requires establishing the equivalence of the stability of STr with certain dominance properties of the maximum partial sum Sn* = max{|Sj|: 1 ≤ j ≤ n} over its maximal increment.


2002 ◽  
Vol 12 (12) ◽  
pp. 2957-2966 ◽  
Author(s):  
CHIH-WEN SHIH ◽  
CHIH-WEN WENG

In the architecture of cellular neural networks (CNN), connections among cells are built on linear coupling laws. These laws are characterized by the so-called templates which express the local interaction weights among cells. Recently, the complete stability for CNN has been extended from symmetric connections to cycle-symmetric connections. In this presentation, we investigate a class of two-dimensional space-invariant templates. We find necessary and sufficient conditions for the class of templates to have cycle-symmetric connections. Complete stability for CNN with several interesting templates is thus concluded.


Sign in / Sign up

Export Citation Format

Share Document