scholarly journals GEOMETRIC REALIZATION AND K-THEORETIC DECOMPOSITION OF C*-ALGEBRAS

2001 ◽  
Vol 12 (03) ◽  
pp. 373-381
Author(s):  
C. L. SCHOCHET

Suppose that A is a separable C*-algebra and that G* is a (graded) subgroup of the ℤ/2-graded group K*(A). Then there is a natural short exact sequence [Formula: see text] In this note we demonstrate how to geometrically realize this sequence at the level of C*-algebras. We KK-theoretically decompose A as [Formula: see text] where K*(At) is the torsion subgroup of K*(A) and K*(Af) is its torsionfree quotient. Then we further decompose At: it is KK-equivalent to ⊕p Ap where K*(Ap) is the p-primary subgroup of the torsion subgroup of K*(A). We then apply this realization to study the Kasparov group K*(A) and related objects.

2012 ◽  
Vol 64 (2) ◽  
pp. 368-408 ◽  
Author(s):  
Ralf Meyer ◽  
Ryszard Nest

AbstractWe define the filtrated K-theory of a C*-algebra over a finite topological spaceXand explain how to construct a spectral sequence that computes the bivariant Kasparov theory overXin terms of filtrated K-theory.For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a spaceXwith four points that have isomorphic filtrated K-theory without being KK(X)-equivalent. For this spaceX, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.


2004 ◽  
Vol 94 (1) ◽  
pp. 125 ◽  
Author(s):  
Shanwen Hu ◽  
Huaxin Lin ◽  
Yifeng Xue

Let $0\to \mathcal J\to \mathcal A\to \mathcal A / \mathcal J\to 0$ be a short exact sequence of separable $C^*$-algebras. We introduce the notion of tracially quasidiagonal extension. Suppose that $\mathcal J$ and $\mathcal A/J$ have tracial topological rank zero. We prove that if $(\mathcal A, \mathcal J)$ is tracially quasidiagonal, then $\mathcal A$ has tracial topological rank zero.


2017 ◽  
Vol 120 (1) ◽  
pp. 115 ◽  
Author(s):  
Adam Rennie ◽  
David Robertson ◽  
Aidan Sims

We show that if $G$ is a second countable locally compact Hausdorff étale groupoid carrying a suitable cocycle $c\colon G\to\mathbb{Z}$, then the reduced $C^*$-algebra of $G$ can be realised naturally as the Cuntz-Pimsner algebra of a correspondence over the reduced $C^*$-algebra of the kernel $G_0$ of $c$. If the full and reduced $C^*$-algebras of $G_0$ coincide, we deduce that the full and reduced $C^*$-algebras of $G$ coincide. We obtain a six-term exact sequence describing the $K$-theory of $C^*_r(G)$ in terms of that of $C^*_r(G_0)$.


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


1997 ◽  
Vol 08 (03) ◽  
pp. 357-374 ◽  
Author(s):  
Kengo Matsumoto

We construct and study C*-algebras associated with subshifts in symbolic dynamics as a generalization of Cuntz–Krieger algebras for topological Markov shifts. We prove some universal properties for the C*-algebras and give a criterion for them to be simple and purely infinite. We also present an example of a C*-algebra coming from a subshift which is not conjugate to a Markov shift.


2008 ◽  
Vol 19 (01) ◽  
pp. 47-70 ◽  
Author(s):  
TOKE MEIER CARLSEN

By using C*-correspondences and Cuntz–Pimsner algebras, we associate to every subshift (also called a shift space) 𝖷 a C*-algebra [Formula: see text], which is a generalization of the Cuntz–Krieger algebras. We show that [Formula: see text] is the universal C*-algebra generated by partial isometries satisfying relations given by 𝖷. We also show that [Formula: see text] is a one-sided conjugacy invariant of 𝖷.


2017 ◽  
Vol 69 (3) ◽  
pp. 548-578 ◽  
Author(s):  
Michael Hartglass

AbstractWe study a canonical C* -algebra, 𝒮(Г,μ), that arises from a weighted graph (Г,μ), speci fic cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 𝒮(Г,μ), and study the structure of its positive cone. We then study the *-algebra,𝒜, generated by the generators of 𝒮(Г,μ), and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements x ∊ Mn(𝒜) have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials inWishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.


2017 ◽  
Vol 60 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Michael Christ ◽  
Marc A. Rieòel

AbstractLet be a length function on a group G, and let M denote the operator of pointwise multiplication by on l2(G). Following Connes, M𝕃 can be used as a “Dirac” operator for the reduced group C*-algebra (G). It deûnes a Lipschitz seminorm on (G), which defines a metric on the state space of (G). We show that for any length function satisfying a strong form of polynomial growth on a discrete group, the topology from this metric coincides with the weak-* topology (a key property for the definition of a “compact quantum metric space”). In particular, this holds for all word-length functions on ûnitely generated nilpotent-by-finite groups.


2016 ◽  
Vol 118 (2) ◽  
pp. 291 ◽  
Author(s):  
Bruce Blackadar

We prove a complete analog of the Borsuk Homotopy Extension Theorem for arbitrary semiprojective $C^*$-algebras. We also obtain some other results about semiprojective $C^*$-algebras: a partial lifting theorem with specified quotient, a lifting result for homomorphisms close to a liftable homomorphism, and that sufficiently close homomorphisms from a semiprojective $C^*$-algebra are homotopic.


2005 ◽  
Vol 97 (1) ◽  
pp. 73 ◽  
Author(s):  
Kengo Matsumoto

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a $\lambda$-graph system $\mathfrak{L}$ by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{L}$. We also introduce a new irreducible condition on $\mathfrak{L}$ under which the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.


Sign in / Sign up

Export Citation Format

Share Document