COMPLEXIFICATIONS OF HOLOMORPHIC ACTIONS AND THE BERGMAN METRIC

2004 ◽  
Vol 15 (08) ◽  
pp. 735-747 ◽  
Author(s):  
ANDREA IANNUZZI ◽  
ANDREA SPIRO ◽  
STEFANO TRAPANI

Let G=(ℝ,+) act by biholomorphisms on a Stein manifold X which admits the Bergman metric. We show that X can be regarded as a G-invariant domain in a "universal" complex manifold X* on which the complexification [Formula: see text] of G acts. The analogous result holds for actions of a larger class of real Lie groups containing, e.g. abelian and certain nilpotent ones. For holomorphic actions of such groups on Stein manifolds, necessary and sufficient conditions for the existence of X* are given.

10.37236/389 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Po-Yi Huang ◽  
Jun Ma ◽  
Yeong-Nan Yeh

Let $\vec{r}=(r_i)_{i=1}^n$ be a sequence of real numbers of length $n$ with sum $s$. Let $s_0=0$ and $s_i=r_1+\ldots +r_i$ for every $i\in\{1,2,\ldots,n\}$. Fluctuation theory is the name given to that part of probability theory which deals with the fluctuations of the partial sums $s_i$. Define $p(\vec{r})$ to be the number of positive sum $s_i$ among $s_1,\ldots,s_n$ and $m(\vec{r})$ to be the smallest index $i$ with $s_i=\max\limits_{0\leq k\leq n}s_k$. An important problem in fluctuation theory is that of showing that in a random path the number of steps on the positive half-line has the same distribution as the index where the maximum is attained for the first time. In this paper, let $\vec{r}_i=(r_i,\ldots,r_n,r_1,\ldots,r_{i-1})$ be the $i$-th cyclic permutation of $\vec{r}$. For $s>0$, we give the necessary and sufficient conditions for $\{ m(\vec{r}_i)\mid 1\leq i\leq n\}=\{1,2,\ldots,n\}$ and $\{ p(\vec{r}_i)\mid 1\leq i\leq n\}=\{1,2,\ldots,n\}$; for $s\leq 0$, we give the necessary and sufficient conditions for $\{ m(\vec{r}_i)\mid 1\leq i\leq n\}=\{0,1,\ldots,n-1\}$ and $\{ p(\vec{r}_i)\mid 1\leq i\leq n\}=\{0,1,\ldots,n-1\}$. We also give an analogous result for the class of all permutations of $\vec{r}$.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Sign in / Sign up

Export Citation Format

Share Document