Best approximation in von Neumann algebras

1977 ◽  
Vol 81 (2) ◽  
pp. 233-236 ◽  
Author(s):  
A. Guyan Robertson

We investigate here the question of uniqueness of best approximation to operators in von Neumann algebras by elements of certain linear subspaces. Recall that a linear subspace V of a Banach space X is called a Chebyshev subspace if each vector in X has a unique best approximation by vectors in V. Our first main result characterizes the one-dimensional Chebyshev subspaces of a von Neumann algebra. This may be regarded as a generalization of a result of Stampfli [(4), theorem 2, corollary] which states that the scalar multiples of the identity operator form a Chebyshev subspace. Alternatively it may be regarded as a generalization of the commutative situation in which a continuous complex-valued function f on a compact Hausdorff space X spans a Chebyshev subspace of C(X) if and only if f does not vanish on X [(3), p. 215]. Our second main result is that a finite dimensional * subalgebra, of dimension > 1, of an infinite dimensional von Neumann algebra cannot be a Chebyshev subspace. This imposes limits to further generalization of Stampfli's result.

1985 ◽  
Vol 37 (4) ◽  
pp. 635-643 ◽  
Author(s):  
A. K. Holzherr

Let G be a locally compact group and ω a normalized multiplier on G. Denote by V(G) (respectively by V(G, ω)) the von Neumann algebra generated by the regular representation (respectively co-regular representation) of G. Kaniuth [6] and Taylor [14] have characterized those G for which the maximal type I finite central projection in V(G) is non-zero (respectively the identity operator in V(G)).In this paper we determine necessary and sufficient conditions on G and ω such that the maximal type / finite central projection in V(G, ω) is non-zero (respectively the identity operator in V(G, ω)) and construct this projection explicitly as a convolution operator on L2(G). As a consequence we prove the following statements are equivalent,(i) V(G, ω) is type I finite,(ii) all irreducible multiplier representations of G are finite dimensional,(iii) Gω (the central extension of G) is a Moore group, that is all its irreducible (ordinary) representations are finite dimensional.


2011 ◽  
Vol 22 (07) ◽  
pp. 991-1011 ◽  
Author(s):  
JUNSHENG FANG ◽  
MINGCHU GAO ◽  
ROGER R. SMITH

A triple of finite von Neumann algebras B ⊆ N ⊆ M is said to have the relative weak asymptotic homomorphism property if there exists a net of unitary operators {uλ}λ∈Λ in B such that [Formula: see text] for all x,y ∈ M. We prove that a triple of finite von Neumann algebras B ⊆ N ⊆ M has the relative weak asymptotic homomorphism property if and only if N contains the set of all x ∈ M such that [Formula: see text] for a finite number of elements x1, …, xn in M. Such an x is called a one-sided quasi-normalizer of B, and the von Neumann algebra generated by all one-sided quasi-normalizers of B is called the one-sided quasi-normalizer algebra of B. We characterize one-sided quasi-normalizer algebras for inclusions of group von Neumann algebras and use this to show that one-sided quasi-normalizer algebras and quasi-normalizer algebras are not equal in general. We also give some applications to inclusions L(H) ⊆ L(G) arising from containments of groups. For example, when L(H) is a masa we determine the unitary normalizer algebra as the von Neumann algebra generated by the normalizers of H in G.


2007 ◽  
Vol 100 (1) ◽  
pp. 75 ◽  
Author(s):  
Yoshikazu Katayama ◽  
Masamichi Takesaki

To study outer actions $\alpha$ of a group $G$ on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$, $0<\lambda<1$, we study first the cohomology group of a group with the unitary group of an abelian von Neumann algebra as a coefficient group and establish a technique to reduce the coefficient group to the torus $\mathsf T$ by the Shapiro mechanism based on the groupoid approach. We then show a functorial construction of outer actions of a countable discrete amenable group on an AFD factor of type $\mathrm{III}_\lambda$, sharpening the result in [17, §4]. The periodicity of the flow of weights on a factor $\mathcal M$ of type $\mathrm{III}_\lambda$ allows us to introduce an equivariant commutative square directly related to the discrete core. But this makes it necessary to introduce an enlarged group $\mathrm{Aut}(\mathcal M)_{m}$ relative to the modulus homomorphism $m=\mod\colon \mathrm{Aut}(\mathcal M)\to \mathsf R/T'\mathsf Z$. We then discuss the reduced modified HJR-exact sequence, which allows us to describe the invariant of outer action $\alpha$ in a simpler form than the one for a general AFD factor: for example, the cohomology group $H_{m,s}^{out}(G,N,\mathsf T)$ of modular obstructions is a compact abelian group. Making use of these reductions, we prove the classification result of outer actions of $G$ on an AFD factor $\mathcal M$ of type $\mathrm{III}_{\lambda}$.


2004 ◽  
Vol 56 (4) ◽  
pp. 843-870 ◽  
Author(s):  
Zhong-Jin Ruan

AbstractWe study the type decomposition and the rectangular AFD property for W*-TRO’s. Like von Neumann algebras, every W*-TRO can be uniquely decomposed into the direct sum of W*- TRO's of type I, type II, and type III. We may further considerW*-TRO's of type Im,n with cardinal numbers m and n, and considerW*-TRO's of type IIλ,μ with λ, μ = 1 or ∞. It is shown that every separable stable W*-TRO (which includes type I∞, ∞, type II∞, ∞ and type III) is TRO-isomorphic to a von Neumann algebra. We also introduce the rectangular version of the approximately finite dimensional property for W*-TRO’s. One of our major results is to show that a separable W*-TRO is injective if and only if it is rectangularly approximately finite dimensional. As a consequence of this result, we show that a dual operator space is injective if and only if its operator predual is a rigid rectangular space (equivalently, a rectangular space).


1978 ◽  
Vol 21 (4) ◽  
pp. 415-418 ◽  
Author(s):  
George A. Elliott

AbstractAn intrinsic characterization is given of those von Neumann algebras which are injective objects in the category of C*-algebras with completely positive maps. For countably generated von Neumann algebras several such characterizations have been given, so it is in fact enough to observe that an injective von Neumann algebra is generated by an upward directed collection of injective countably generated sub von Neumann algebras. The present work also shows that three of the intrinsic characterizations known in the countably generated case hold in general.


1969 ◽  
Vol 21 ◽  
pp. 1293-1308 ◽  
Author(s):  
Wai-Mee Ching

A von Neumann algebra is called hyperfinite if it is the weak closure of an increasing sequence of finite-dimensional von Neumann subalgebras. For a separable infinite-dimensional Hilbert space the following is known: there exist hyperfinite and non-hyperfinite factors of type II1 (4, Theorem 16’), and of type III (8, Theorem 1); all hyperfinite factors of type Hi are isomorphic (4, Theorem 14); there exist uncountably many non-isomorphic hyperfinite factors of type III (7, Theorem 4.8); there exist two nonisomorphic non-hyperfinite factors of type II1 (10), and of type III (11). In this paper we will show that on a separable infinite-dimensional Hilbert space there exist three non-isomorphic non-hyperfinite factors of type II1 (Theorem 2), and of type III (Theorem 3).Section 1 contains an exposition of crossed product, which is developed mainly for the construction of factors of type III in § 3.


1987 ◽  
Vol 39 (1) ◽  
pp. 74-99 ◽  
Author(s):  
Paul S. Muhly ◽  
Kichi-Suke Saito

Let M be a von Neumann algebra and let {αt}t∊R be a σ-weakly continuous flow on M; i.e., suppose that {αt}t∊R is a one-parameter group of *-automorphisms of M such that for each ρ in the predual, M∗, of M and for each x ∊ M, the function of t, ρ(αt(x)), is continuous on R. In recent years, considerable attention has been focused on the subspace of M, H∞(α), which is defined to bewhere H∞(R) is the classical Hardy space consisting of the boundary values of functions bounded analytic in the upper half-plane. In Theorem 3.15 of [8] it is proved that in fact H∞(α) is a σ-weakly closed subalgebra of M containing the identity operator such thatis σ-weakly dense in M, and such that


Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


Sign in / Sign up

Export Citation Format

Share Document