scholarly journals A wall-crossing formula for degrees of Real central projections

2014 ◽  
Vol 25 (04) ◽  
pp. 1450038 ◽  
Author(s):  
Christian Okonek ◽  
Andrei Teleman

The main result is a wall-crossing formula for central projections defined on submanifolds of a Real projective space. Our formula gives the jump of the degree of such a projection when the center of the projection varies. The fact that the degree depends on the projection is a new phenomenon, specific to Real algebraic geometry. We illustrate this phenomenon in many interesting situations. The crucial assumption on the class of maps we consider is relative orientability, a condition which allows us to define a ℤ-valued degree map in a coherent way. We end the article with several examples, e.g. the pole placement map associated with a quotient, the Wronski map, and a new version of the Real subspace problem.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Emily Clader ◽  
Dustin Ross

Abstract The hybrid model is the Landau–Ginzburg-type theory that is expected, via the Landau–Ginzburg/ Calabi–Yau correspondence, to match the Gromov–Witten theory of a complete intersection in weighted projective space. We prove a wall-crossing formula exhibiting the dependence of the genus-zero hybrid model on its stability parameter, generalizing the work of [21] for quantum singularity theory and paralleling the work of Ciocan-Fontanine–Kim [7] for quasimaps. This completes the proof of the genus-zero Landau– Ginzburg/Calabi–Yau correspondence for complete intersections of hypersurfaces of the same degree, as well as the proof of the all-genus hybrid wall-crossing [11].


1971 ◽  
Vol 23 (6) ◽  
pp. 1102-1115 ◽  
Author(s):  
Richard L. W. Brown

In 1944 Whitney proved that any differentiable n-manifold (n ≧ 2) can be (differentiably) immersed in R2n–1[15] and embedded in R2n [14]. Whitney's results are best possible when n = 2r. (One uses a simple argument involving the dual Stiefel-Whitney classes of real projective space Pn. See [9, pp. 14, 15].) However, there is a widely known conjecture that any R-manifold (n ≧ 2) immerses in R2n–α(n) and embeds in R2n–α(n)+1. Here, α(n) denotes the number of ones in the binary expansion of n. We prove (Theorem 5.1) that every compact manifold is cobordant to a manifold that immerses in (2n – α(n))-space and embeds in (2n – α(n) + 1)-space. (See § 1 for the definition of cobordant manifolds.) It is well known that if the conjecture were true it would be the best possible result.


2020 ◽  
Vol 66 (2) ◽  
pp. 231-254
Author(s):  
Edoardo Ballico ◽  
Emanuele Ventura

Abstract We study linear series on curves inducing injective morphisms to projective space, using zero-dimensional schemes and cohomological vanishings. Albeit projections of curves and their singularities are of central importance in algebraic geometry, basic problems still remain unsolved. In this note, we study cuspidal projections of space curves lying on irreducible quadrics (in arbitrary characteristic).


2018 ◽  
Vol 2020 (17) ◽  
pp. 5450-5475 ◽  
Author(s):  
Jinwon Choi ◽  
Michel van Garrel ◽  
Sheldon Katz ◽  
Nobuyoshi Takahashi

Abstract We study the BPS invariants for local del Pezzo surfaces, which can be obtained as the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves on the surface $S$. We calculate the Poincaré polynomials of the moduli spaces for the curve classes $\beta $ having arithmetic genus at most 2. We formulate a conjecture that these Poincaré polynomials are divisible by the Poincaré polynomials of $((-K_S).\beta -1)$-dimensional projective space. This conjecture motivates the upcoming work on log BPS numbers [8].


1999 ◽  
Vol 42 (3) ◽  
pp. 307-320 ◽  
Author(s):  
Michael Kapovich ◽  
John J. Millson

AbstractWe give a “wall-crossing” formula for computing the topology of the moduli space of a closed n-gon linkage on 𝕊2. We do this by determining the Morse theory of the function ρn on the moduli space of n-gon linkages which is given by the length of the last side—the length of the last side is allowed to vary, the first (n − 1) side-lengths are fixed. We obtain a Morse function on the (n − 2)-torus with level sets moduli spaces of n-gon linkages. The critical points of ρn are the linkages which are contained in a great circle. We give a formula for the signature of the Hessian of ρn at such a linkage in terms of the number of back-tracks and the winding number. We use our formula to determine the moduli spaces of all regular pentagonal spherical linkages.


Sign in / Sign up

Export Citation Format

Share Document