Constructions of Einstein Finsler metrics by warped product

2018 ◽  
Vol 29 (11) ◽  
pp. 1850081 ◽  
Author(s):  
Bin Chen ◽  
Zhongmin Shen ◽  
Lili Zhao

The warped product structures of Finsler metrics are studied in this paper. We give the formulae of the flag curvature and Ricci curvature of these metrics, and obtain the characterization of such metrics to be Einstein. Some Einstein Finsler metrics of this type are constructed.

Author(s):  
Huaifu Liu ◽  
Xiaohuan Mo

AbstractIn this paper, we study locally projectively flat Finsler metrics of constant flag curvature. We find equations that characterize these metrics by warped product. Using the obtained equations, we manufacture new locally projectively flat Finsler warped product metrics of vanishing flag curvature. These metrics contain the metric introduced by Berwald and the spherically symmetric metric given by Mo-Zhu.


Author(s):  
Hironori Kumura

Let UB(p0; ρ1) × f MV be a cylindrically bounded domain in a warped product manifold := MB × fMV and let M be an isometrically immersed submanifold in . The purpose of this paper is to provide explicit radii of the geodesic balls of M which first exit from UB(p0; ρ1) × fMV for the case in which the mean curvature of M is sufficiently small and the lower bound of the Ricci curvature of M does not diverge to –∞ too rapidly at infinity.


2018 ◽  
Vol 62 (3) ◽  
pp. 509-523
Author(s):  
Libing Huang ◽  
Xiaohuan Mo

AbstractIn this paper, we study a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ in this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amira A. Ishan

The present paper studies the applications of Obata’s differential equations on the Ricci curvature of the pointwise semislant warped product submanifolds. More precisely, by analyzing Obata’s differential equations on pointwise semislant warped product submanifolds, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to a sphere. We also look at the effects of certain differential equations on pointwise semislant warped product submanifolds and show that the base is isometric to a special type of warped product under some geometric conditions.


Sign in / Sign up

Export Citation Format

Share Document