SUPPORT VECTOR MACHINE CLASSIFICATION OF PHYSICAL AND BIOLOGICAL DATASETS

2003 ◽  
Vol 14 (05) ◽  
pp. 575-585 ◽  
Author(s):  
CONG-ZHONG CAI ◽  
WAN-LU WANG ◽  
YU-ZONG CHEN

The support vector machine (SVM) is used in the classification of sonar signals and DNA-binding proteins. Our study on the classification of sonar signals shows that SVM produces a result better than that obtained from other classification methods, which is consistent from the findings of other studies. The testing accuracy of classification is 95.19% as compared with that of 90.4% from multilayered neural network and that of 82.7% from nearest neighbor classifier. From our results on the classification of DNA-binding proteins, one finds that SVM gives a testing accuracy of 82.32%, which is slightly better than that obtained from an earlier study of SVM classification of protein–protein interactions. Hence, our study indicates the usefulness of SVM in the identification of DNA-binding proteins. Further improvements in SVM algorithm and parameters are suggested.

Author(s):  
Lina Yang ◽  
Xiangyu Li ◽  
Ting Shu ◽  
Patrick Wang ◽  
Xichun Li

DNA-binding proteins are an essential part of the DNA. It also an integral component during life processes of various organisms, for instance, DNA recombination, replication, and so on. Recognition of such proteins helps medical researchers pinpoint the cause of disease. Traditional techniques of identifying DNA-binding proteins are expensive and time-consuming. Machine learning methods can identify these proteins quickly and efficiently. However, the accuracies of the existing related methods were not high enough. In this paper, we propose a framework to identify DNA-binding proteins. The proposed framework first uses PseKNC (ps), MomoKGap (mo), and MomoDiKGap (md) methods to combine three algorithms to extract features. Further, we apply Adaboost weight ranking to select optimal feature subsets from the above three types of features. Based on the selected features, three algorithms (k-nearest neighbor (knn), Support Vector Machine (SVM), and Random Forest (RF)) are applied to classify it. Finally, three predictors for identifying DNA-binding proteins are established, including [Formula: see text], [Formula: see text], [Formula: see text]. We utilize benchmark and independent datasets to train and evaluate the proposed framework. Three tests are performed, including Jackknife test, 10-fold cross-validation and independent test. Among them, the accuracy of ps+md is the highest. We named the model with the best result as psmdDBPs and applied it to identify DNA-binding proteins.


2020 ◽  
Vol 17 (4) ◽  
pp. 302-310
Author(s):  
Yijie Ding ◽  
Feng Chen ◽  
Xiaoyi Guo ◽  
Jijun Tang ◽  
Hongjie Wu

Background: The DNA-binding proteins is an important process in multiple biomolecular functions. However, the tradition experimental methods for DNA-binding proteins identification are still time consuming and extremely expensive. Objective: In past several years, various computational methods have been developed to detect DNAbinding proteins. However, most of them do not integrate multiple information. Methods: In this study, we propose a novel computational method to predict DNA-binding proteins by two steps Multiple Kernel Support Vector Machine (MK-SVM) and sequence information. Firstly, we extract several feature and construct multiple kernels. Then, multiple kernels are linear combined by Multiple Kernel Learning (MKL). At last, a final SVM model, constructed by combined kernel, is built to predict DNA-binding proteins. Results: The proposed method is tested on two benchmark data sets. Compared with other existing method, our approach is comparable, even better than other methods on some data sets. Conclusion: We can conclude that MK-SVM is more suitable than common SVM, as the classifier for DNA-binding proteins identification.


2015 ◽  
Vol 9 (Suppl 1) ◽  
pp. S10 ◽  
Author(s):  
Ruifeng Xu ◽  
Jiyun Zhou ◽  
Hongpeng Wang ◽  
Yulan He ◽  
Xiaolong Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Ma ◽  
Jiansheng Wu ◽  
Xiaoyun Xue

DNA-binding proteins are fundamentally important in understanding cellular processes. Thus, the identification of DNA-binding proteins has the particularly important practical application in various fields, such as drug design. We have proposed a novel approach method for predicting DNA-binding proteins using only sequence information. The prediction model developed in this study is constructed by support vector machine-sequential minimal optimization (SVM-SMO) algorithm in conjunction with a hybrid feature. The hybrid feature is incorporating evolutionary information feature, physicochemical property feature, and two novel attributes. These two attributes use DNA-binding residues and nonbinding residues in a query protein to obtain DNA-binding propensity and nonbinding propensity. The results demonstrate that our SVM-SMO model achieves 0.67 Matthew's correlation coefficient (MCC) and 89.6% overall accuracy with 88.4% sensitivity and 90.8% specificity, respectively. Performance comparisons on various features indicate that two novel attributes contribute to the performance improvement. In addition, our SVM-SMO model achieves the best performance than state-of-the-art methods on independent test dataset.


Sign in / Sign up

Export Citation Format

Share Document