dna binding proteins
Recently Published Documents


TOTAL DOCUMENTS

1386
(FIVE YEARS 130)

H-INDEX

96
(FIVE YEARS 8)

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Abigail R. Ward ◽  
Sara Dmytriw ◽  
Ananya Vajapayajula ◽  
Christopher D. Snow

Protein and DNA co-crystals are most commonly prepared to reveal structural and functional details of DNA-binding proteins when subjected to X-ray diffraction. However, biomolecular crystals are notoriously unstable in solution conditions other than their native growth solution. To achieve greater application utility beyond structural biology, biomolecular crystals should be made robust against harsh conditions. To overcome this challenge, we optimized chemical DNA ligation within a co-crystal. Co-crystals from two distinct DNA-binding proteins underwent DNA ligation with the carbodiimide crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) under various optimization conditions: 5′ vs. 3′ terminal phosphate, EDC concentration, EDC incubation time, and repeated EDC dose. This crosslinking and DNA ligation route did not destroy crystal diffraction. In fact, the ligation of DNA across the DNA–DNA junctions was clearly revealed via X-ray diffraction structure determination. Furthermore, crystal macrostructure was fortified. Neither the loss of counterions in pure water, nor incubation in blood serum, nor incubation at low pH (2.0 or 4.5) led to apparent crystal degradation. These findings motivate the use of crosslinked biomolecular co-crystals for purposes beyond structural biology, including biomedical applications.


2021 ◽  
Author(s):  
Ya Li ◽  
Xiuxia Zheng ◽  
Mengtian Pei ◽  
Mengting Chen ◽  
Shengnan Zhang ◽  
...  

Genes encoding for proteins containing the DNA binding Myb domain have been suggested to be important in regulating development and stress response in eukaryotes, including fungi. Magnaporthe oryzae (teleomorph Pyricularia oryzae) is considered the most destructive pathogen of rice. We screen the M. oryzae genome for all genes encoding proteins containing Myb domains since these genes could be essential during pathogenesis. We found 19 genes Myb1-19. Only a few have previously been investigated, and only one has proven to be involved in pathogenesis. We tried to delete the other 18 genes and succeeded with all except 6, five of which could be essential. RT-qPCR showed that all 19 genes are expressed during pathogenesis, although at different levels and with different expression profiles. To our surprise, only deletions of the genes encoding proteins MoMyb2, MoMyb13, and MoMyb15 showed growth, conidiation, and infection phenotypes, indicating that they are essential on their own during infection. This lack of phenotypes for the other mutants surprised us, and we extended the analysis to look for expression co-regulation and found 5 co-regulated groups of predicted proteins with Myb-domains. We point to likely compensatory regulations of the other Myb-family genes hiding the effect of many deletions. Further studies of the Myb-family genes are thus of interest since revealing the functions of these genes with a possible effect on pathogenicity since these could be targets for future measures to control M. oryzae in rice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kiyoto Kamagata

DNA-binding proteins trigger various cellular functions and determine cellular fate. Before performing functions such as transcription, DNA repair, and DNA recombination, DNA-binding proteins need to search for and bind to their target sites in genomic DNA. Under evolutionary pressure, DNA-binding proteins have gained accurate and rapid target search and binding strategies that combine three-dimensional search in solution, one-dimensional sliding along DNA, hopping and jumping on DNA, and intersegmental transfer between two DNA molecules. These mechanisms can be achieved by the unique structural and dynamic properties of these proteins. Single-molecule fluorescence microscopy and molecular dynamics simulations have characterized the molecular actions of DNA-binding proteins in detail. Furthermore, these methodologies have begun to characterize liquid condensates induced by liquid-liquid phase separation, e.g., molecular principles of uptake and dynamics in droplets. This review discusses the molecular action of DNA-binding proteins on DNA and in liquid condensate based on the latest studies that mainly focused on the model protein p53.


2021 ◽  
Author(s):  
Kuo Song ◽  
Martin Hagemann ◽  
Doerte Becher ◽  
Sandra Maass ◽  
Jens Georg ◽  
...  

F0F1 ATP synthases produce ATP, the universal biological energy source. ATP synthase complexes on cyanobacterial thylakoid membranes use proton gradients generated either by photosynthesis or respiration. AtpΘ is an ATP synthase regulator in cyanobacteria encoded by atpT. AtpΘ inhibits the hydrolysis of ATP (reverse reaction) that otherwise would occur under unfavorable conditions. In the cyanobacterium Synechocystis sp. PCC 6803, AtpΘ is expressed at very low levels under optimum phototrophic growth conditions or in the presence of glucose, but its expression is substantially increased 10 min after transfer into darkness. DNA coimmunoprecipitation experiments followed by mass spectrometry identified the binding of the two transcriptional regulators cyAbrB1 and cyAbrB2 to the promoter and the histone-like protein HU to the 5-UTR of atpT. GFP reporter assays revealed a detectable but small effect on transcriptional regulation. However, atpT transcript stabilities differed dramatically, half-lives were 1.6 min in the light, 33 min in the dark and substantial changes were observed if glucose or DCMU were added. Basic transcriptional control of atpT involves nucleoid-associated DNA-binding proteins, while the major effect on the condition-dependent regulation of atpT expression is mediated by controlling mRNA stability, which is related to the cellular redox and energy status.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jenny Kaur Singh ◽  
Rebecca Smith ◽  
Magdalena B. Rother ◽  
Anton J. L. de Groot ◽  
Wouter W. Wiegant ◽  
...  

AbstractDNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a ‘Ku-adaptor’ that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.


2021 ◽  
Author(s):  
Logan R. Myler ◽  
Charles G. Kinzig ◽  
Nanda K. Sasi ◽  
George Zakusilo ◽  
Sarah W. Cai ◽  
...  

The mammalian telomeric shelterin complex—comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


2021 ◽  
Vol 22 (21) ◽  
pp. 11591
Author(s):  
Teresa Szczepińska ◽  
Ayatullah Faruk Mollah ◽  
Dariusz Plewczynski

The nature of genome organization into two basic structural compartments is as yet undiscovered. However, it has been indicated to be a mechanism of gene expression regulation. Using the classification approach, we ranked genomic marks that hint at compartmentalization. We considered a broad range of marks, including GC content, histone modifications, DNA binding proteins, open chromatin, transcription and genome regulatory segmentation in GM12878 cells. Genomic marks were defined over CTCF or RNAPII loops, which are basic elements of genome 3D structure, and over 100 kb genomic windows. Experiments were carried out to empirically assess the whole set of features, as well as the individual features in classification of loops/windows, into compartment A or B. Using Monte Carlo Feature Selection and Analysis of Variance, we constructed a ranking of feature importance for classification. The best simple indicator of compartmentalization is DNase-seq open chromatin measurement for CTCF loops, H3K4me1 for RNAPII loops and H3K79me2 for genomic windows. Among DNA binding proteins, this is RUNX3 transcription factor for loops and RNAPII for genomic windows. Chromatin state prediction methods that indicate active elements like promoters, enhancers or heterochromatin enhance the prediction of loop segregation into compartments. However, H3K9me3, H4K20me1, H3K27me3 histone modifications and GC content poorly indicate compartments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saurabh J. Pradhan ◽  
Puli Chandramouli Reddy ◽  
Michael Smutny ◽  
Ankita Sharma ◽  
Keisuke Sako ◽  
...  

AbstractZygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aiqin Ding ◽  
Anqi Ding ◽  
Ping Li ◽  
Jia Wang ◽  
Tangren Cheng ◽  
...  

Prunus mume is an illustrious ornamental woody plant with colorful flowers, delicate fragrances, and graceful tree forms. Low temperature limits its geographical distribution. The basic helix-loop-helix (bHLH) proteins exist in most eukaryotes as a transcription factor superfamily, which play a crucial role in metabolism, physiology, development, and response to various stresses of higher organisms. However, the characteristics of the bHLH gene family and low-temperature response remain unknown in P. mume. In the present study, we distinguished 95 PmbHLH genes in the P. mume whole-genome and analyzed their features. PmbHLHs were divided into 23 subfamilies and one orphan by phylogenetic analysis. Similar gene structures and conserved motifs appeared in the same subfamily. These genes were situated in eight chromosomes and scaffolds. Gene duplication events performed a close relationship to P. mume, P. persica, and P. avium. Tandem duplications probably promoted the expansion of PmbHLHs. According to predicted binding activities, the PmbHLHs were defined as the Non-DNA-binding proteins and DNA-binding proteins. Furthermore, PmbHLHs exhibited tissue-specific and low-temperature induced expression patterns. By analyzing transcriptome data, 10 PmbHLHs which are responsive to low-temperature stress were selected. The qRT-PCR results showed that the ten PmbHLH genes could respond to low-temperature stress at different degrees. There were differences in multiple variations among different varieties. This study provides a basis to research the evolution and low-temperature tolerance of PmbHLHs, and might enhance breeding programs of P. mume by improving low-temperature tolerance.


Sign in / Sign up

Export Citation Format

Share Document