A Performance Model of Software-Based Deadlock Recovery Routing Algorithm in Hypercubes

2005 ◽  
Vol 15 (01n02) ◽  
pp. 153-168 ◽  
Author(s):  
A. KHONSARI ◽  
H. SARBAZI-AZAD ◽  
M. OULD-KHAOUA

Recent studies have revealed that deadlocks are generally infrequent in the network. Thus the hardware resources, e.g. virtual channels, dedicated for deadlock avoidance are not utilised most of the time. This consideration has motivated the development of novel adaptive routing algorithms with deadlock recovery. This paper describes a new analytical model to predict message latency in hypercubes with a true fully adaptive routing algorithm with progressive deadlock recovery. One of the main features of the proposed model is the use of results from queueing systems with impatient customers to capture the effects of the timeout mechanism used in this routing algorithm for deadlock detection. The validity of the model is demonstrated by comparing analytical results with those obtained through simulation experiments.

2007 ◽  
Vol 17 (02) ◽  
pp. 213-228 ◽  
Author(s):  
A. KHONSARI ◽  
A. SHAHRABI ◽  
M. OULD-KHAOUA

A number of analytical models for predicting message latency in k-ary n-cubes have recently been reported in the literature. Most of these models, however, have been discussed for adaptive routing algorithms based on deadlock avoidance, e.g. Duato's routing. Several research studies have empirically demonstrated that routing algorithms based on deadlock recovery offer maximal adaptivity that can result in considerable improvement in network performance. Disha is an example of a true fully adaptive routing algorithm that uses minimal hardware to implement a simple and efficient progressive method to recover from potential deadlocks. This paper proposes a new analytical model of Disha in wormhole-routed k-ary n-cubes. Simulation experiments confirm that the proposed model exhibits a good degree of accuracy for various networks sizes and under different traffic conditions.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-6
Author(s):  
Mohammed Shaba Saliu ◽  
Muyideen Omuya Momoh ◽  
Pascal Uchenna Chinedu ◽  
Wilson Nwankwo ◽  
Aliu Daniel

Network-on-Chip (NoC) has been proposed as a viable solution to the communication challenges on System-on-Chips (SoCs). As the communication paradigm of SoC, NoCs performance depends mainly on the type of routing algorithm chosen. In this paper different categories of routing algorithms were compared. These include XY routing, OE turn model adaptive routing, DyAD routing and Age-Aware adaptive routing.  By varying the load at different Packet Injection Rate (PIR) under random traffic pattern, comparison was conducted using a 4 × 4 mesh topology. The Noxim simulator, a cycle accurate systemC based simulator was employed. The packets were modeled as a Poisson distribution; first-in-first-out (FIFO) input buffer channel with a depth of five (5) flits and a flit size of 32 bits; and a packet size of 3 flits respectively. The simulation time was 10,000 cycles. The findings showed that the XY routing algorithm performed better when the PIR is low.  In a similar vein, the DyAD routing and Age-aware algorithms performed better when the load i.e. PIR is high.


Sign in / Sign up

Export Citation Format

Share Document