NOTES ON "LINEAR PROGRAMMING TECHNIQUE TO SOLVE TWO-PERSON MATRIX GAMES WITH INTERVAL PAY-OFFS"

2011 ◽  
Vol 28 (06) ◽  
pp. 705-737 ◽  
Author(s):  
DENG-FENG LI

The aim of this note is to point out and correct some vital mistakes in the paper by P K Nayak and M Pal, "Linear programming technique to solve two person matrix (games with interval pay-offs). Asia-Pacific Journal of Operational Research, 26(2), 285–305". Lots of serious mistakes on the definitions, conclusions, models, methods, proofs and computing results have been corrected and modified in this note. We also indicate inappropriate formulations regarding their proposed linear programming models for solving generic matrix games with interval pay-offs and suggest a pair of linear programming models with any minimal acceptance degree of the interval inequality constraints which may be allowed to violate. The lexicographic method is suggested so that a rational and credible solution of the generic matrix game with interval pay-offs can be achieved.

Author(s):  
DENG-FENG LI

The purpose of the paper is to study how to solve a type of matrix games with payoffs of triangular fuzzy numbers. In this paper, the value of a matrix game with payoffs of triangular fuzzy numbers has been considered as a variable of the triangular fuzzy number. First, based on two auxiliary linear programming models of a classical matrix game and the operations of triangular fuzzy numbers, fuzzy optimization problems are established for two players. Then, based on the order relation of triangular fuzzy numbers the fuzzy optimization problems for players are decomposed into three-objective linear programming models. Finally, using the lexicographic method maximin and minimax strategies for players and the fuzzy value of the matrix game with payoffs of triangular fuzzy numbers can be obtained through solving two corresponding auxiliary linear programming problems, which are easily computed using the existing Simplex method for the linear programming problem. It has been shown that the models proposed in this paper extend the classical matrix game models. A numerical example is provided to illustrate the methodology.


2016 ◽  
Vol 33 (06) ◽  
pp. 1650047 ◽  
Author(s):  
Sanjiv Kumar ◽  
Ritika Chopra ◽  
Ratnesh R. Saxena

The aim of this paper is to develop an effective method for solving matrix game with payoffs of trapezoidal fuzzy numbers (TrFNs). The method always assures that players’ gain-floor and loss-ceiling have a common TrFN-type fuzzy value and hereby any matrix game with payoffs of TrFNs has a TrFN-type fuzzy value. The matrix game is first converted to a fuzzy linear programming problem, which is converted to three different optimization problems, which are then solved to get the optimum value of the game. The proposed method has an edge over other method as this focuses only on matrix games with payoff element as symmetric trapezoidal fuzzy number, which might not always be the case. A numerical example is given to illustrate the method.


Author(s):  
Doaa Wafik ◽  
O. E. Emam

The aim of this paper is to use a bi-level linear programming technique with rough parameters in the constraints, for measuring the technical efficiency of local banks in UAE and Egypt, while the proposed linear objective functions will be maximized for different goals. Based on Dauer's and Krueger's goal programmingmethod, the described approach was developed to deal with the bi-level decision-making problem. The concept of tolerance membership function together was used to generate the optimal solution for the problem under investigation. Also an auxiliary problem is discussed to illustrate the functionality of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document