water activity
Recently Published Documents


TOTAL DOCUMENTS

2662
(FIVE YEARS 480)

H-INDEX

86
(FIVE YEARS 8)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Madison P. Wagoner ◽  
Marc R. Presume ◽  
Moses E. Chilenje ◽  
Gerardo A. Abascal-Ponciano ◽  
Jorge L. Sandoval ◽  
...  

Poultry co-product chicken frames (CF) and wooden breast (WB) along with ingredient technology use may bring enhanced value to the pet food industry. Therefore, the current study focused on evaluating CF and WB combinations along with sodium alginate and encapsulated calcium lactate pentahydrate (ALGIN) inclusion within a fresh pet food formulation under simulated shelf-life conditions. Fresh chicken frames (CF) and boneless-skinless wooden breast (WB) were ground and allocated randomly to one of ten treatment combinations with either 0.5 or 1.0% added ALGIN. Ground treatments were placed into a form and fill vacuum package and stored using a reach-in refrigerated case for 21 days. Packages were evaluated for instrumental surface color, lipid oxidation, water activity, and pH on days 1, 3, 7, 14 and 21 of the display. Packages of pet food were lighter, less red, and more yellow (p < 0.05) with increasing percentages of CF regardless of ALGIN inclusion, whereas pH was greater (p < 0.05) and lipid oxidation was less (p < 0.05) with increasing percentage of WB. Water activity increased (p < 0.05) when WB and ALGIN inclusion increased. The current results suggest that the use of ALGIN in a poultry co-product pet food formulation can improve shelf-life characteristics such as surface color and lipid oxidation in fresh pet food.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ryan Tangney ◽  
David J. Merritt ◽  
Ben P. Miller

Changes in fire regimes due to climate change and fire management practices are affecting the timing, length, and distribution of vegetation fires throughout the year. Plant species responses and tolerances to fire differ from season to season and are influenced by species-specific phenological processes. The ability of seeds to tolerate extreme temperatures associated with fire is one of these processes, with survival linked to seed moisture content at the time of exposure. As fire is more often occurring outside historic dry fire seasons, the probability of fire occurring when seeds are hydrated may also be increasing. In this study, we set out to understand the seasonal dynamics of seed hydration for seeds of Banksia woodland species, and how certain seed traits interact with environmental conditions to influence survival of high temperatures associated with fire. We measured the moisture content of seeds buried to 2 cm in the soil seed bank for four common native species and one invasive species on a weekly basis throughout 2017, along with soil moisture content and environmental correlates. We determined water sorption isotherms at 20°C for seeds of each species and used these functions to model weekly variation in seed water activity and predict when seeds are most sensitive to soil heating. Using Generalised additive models (GAMs), we were able to describe approximately 67% of the weekly variance in seed water activity and explored differences in seed hydration dynamics between species. Seed water activity was sufficiently high (i.e., ≥ 0.85 aw) so as to have created an increased risk of mortality if a fire had occurred during an almost continuous period between May and November in the study period (i.e., 2017). There were brief windows when seeds may have been in a dry state during early winter and late spring, and also when they may have been in a wet state during summer and late autumn. These data, and the associated analyses, provide an opportunity to develop approaches to minimize seed mortality during fire and maximize the seed bank response.


2022 ◽  
Vol 22 (1) ◽  
pp. 65-91
Author(s):  
Manuel Baumgartner ◽  
Christian Rolf ◽  
Jens-Uwe Grooß ◽  
Julia Schneider ◽  
Tobias Schorr ◽  
...  

Abstract. Laboratory measurements at the AIDA cloud chamber and airborne in situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low temperatures of the tropical tropopause layer, together with the number of ice crystals also the transport of water vapor into the stratosphere. Both the appearance of cirrus clouds and the amount of stratospheric water feed back to the radiative budget of the atmosphere. In order to explore the enhanced ice onset humidities, we re-examine the entire homogeneous ice nucleation process, ice onset, and nucleated crystal numbers, by means of a two-moment microphysics scheme embedded in the trajectory-based model (CLaMS-Ice) as follows: the well-understood and described theoretical framework of homogeneous ice nucleation includes certain formulations of the water activity of the freezing aerosol particles and the saturation vapor pressure of water with respect to liquid water. However, different formulations are available for both parameters. Here, we present extensive sensitivity simulations testing the influence of three different formulations for the water activity and four for the water saturation on homogeneous ice nucleation. We found that the number of nucleated ice crystals is almost independent of these formulations but is instead sensitive to the size distribution of the freezing aerosol particles. The ice onset humidities, also depending on the particle size, are however significantly affected by the choices of the water activity and water saturation, in particular at cold temperatures ≲205 K. From the CLaMS-Ice sensitivity simulations, we here provide combinations of water saturation and water activity formulations suitable to reproduce the new, enhanced freezing line.


Author(s):  
Beatriz Castillo-Téllez ◽  
Margarita Castillo-Téllez ◽  
Gerardo Alberto Mejía-Pérez ◽  
Carlos Jesahel Vega Gómez

In celery, leaves, roots, and fruit contain a high value in medicinal properties and are used to prepare syrups, tinctures, infusions, or oils; however, its leaves are commonly discarded, wasting their nutritional and medicinal content. The dehydration of these leaves is a conservation option, increasing their shelf life. This study analyzes direct and mixed solar drying (SD and SM) kinetics and their effect on celery leaves. The moisture contents, drying rate, water activity, and colorimetry were obtained. Moreover, the fitting of experimental data to the mathematical models proposed in the literature. The moisture content stabilized at 150 min in the SM at the shortest time with a maximum drying rate of 0.1179 g∙water/g∙ dm∙min. The initial and final water activity was 0.98 and 0.412 in the SM and 0.403 in the SD. The SD better conserved the leaf color, with a total color change (ΔE) of 2.56, while the value obtained with the SM was 5.42. The experimental results of both technologies were better adjusted to the model Two exponential terms with an R² of 0.999. The results show that the solar drying of the celery leaves is feasible, and a quality product is obtained sustainably.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Piotr Konieczny ◽  
Wojciech Andrzejewski ◽  
Tianyu Yang ◽  
Maria Urbańska ◽  
Jerzy Stangierski ◽  
...  

The aim of this study was to describe the quality attributes of a freeze-dried preparation obtained from freshwater mussel Sinanodonta woodiana (SW) soft tissue in respect to its potential as a novel pet food ingredient. After ecotoxicological testing of the raw material with MARA (Microbial Assay for Risk Assessment), the basic physico-chemical properties of the powder, such as approximate composition, bulk density, color parameters, water activity, electrophoretic analysis (SDS-PAGE), solubility, gelling and emulsifying capacity, were analyzed. The powder with a water activity of 0.43 offers a toxically safe preparation that contains over 34% protein/100 g of dry matter (DM). The SDS-PAGE profile showed twelve protein bands with a molecular weight (MW) ranging from >250 to 10 kDa. Taurine content has been estimated at an essential amount above 150 mg/100 g of DM. The powder possessed desirable emulsifying properties with 230 mL per 1 g and demonstrated the ability to form a firmer gel with a strength of 152.9 g at a temperature above 80 °C with at least 10% protein content. The L*, a*, and b* values characterizing powder color were found to be 69.49, 16.33, and 3.86, respectively. The SW mussel powder seems to be a promising ingredient that can be added with other binding or gelling agents in order to improve both the taste and acceptance of the final pet food products.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Maha Al-Khalili ◽  
Nasser Al-Habsi ◽  
Mohammad Shafiur Rahman

Measurement of water activity and moisture sorption isotherms of foods and biomaterials are important to determine the state of water. In this work, a dynamic temperature-humidity (DTH) controlled chamber was used to measure water sorption isotherm and compared with the conventional isopiestic method. Temperature and relative humidity of DTH chamber can be controlled in the range of -15 to 100°C and 0 to 98%, respectively; thus, measurement of water activity at any point can be measured within the above ranges. The DTH chamber method showed high reproducibility as compared with the conventional isopiestic method when measured isotherms of cellulose, lignin, and hemicellulase were compared at 30°C. Finally, isotherm data of cellulose, lignin, and hemicellulase were generated in the temperature range of 10-90°C using DTH chamber, and these were modelled by BET and GAB equations. The model parameters were correlated with the temperature.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Amin Zarei ◽  
Leila Khazdooz ◽  
Sara Madarshahian ◽  
Mojtaba Enayati ◽  
Imann Mosleh ◽  
...  

Nicotinamide riboside chloride (NRCl) is an effective form of vitamin B3. However, it cannot be used in ready-to-drink (RTD) beverages or high-water activity foods because of its intrinsic instability in water. To address this issue, we synthesized nicotinamide riboside trioleate chloride (NRTOCl) as a new hydrophobic nicotinamide riboside (NR) derivative. Contrary to NRCl, NRTOCl is soluble in an oil phase. The results of stability studies showed that NRTOCl was much more stable than NRCl both in water and in oil-in-water emulsions at 25 °C and 35 °C. Finally, we evaluated the bioavailability of NRTOCl by studying its digestibility in simulated intestinal fluid. The results demonstrated that NRTOCl was partially digestible and released NR in the presence of porcine pancreatin in a simulated intestinal fluid. This study showed that NRTOCl has the potential to be used as an NR derivative in ready-to-drink (RTD) beverages and other foods and supplement applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Alaa Baazeem ◽  
Angel Medina ◽  
Naresh Magan

There is little knowledge of the effect of acclimatization of Aspergillus flavus strains to climate-related abiotic factors and the subsequent effects on growth and aflatoxin B1 (AFB1) production. In this study, two strains of A. flavus (AB3, AB10) were acclimatized for five generations in elevated CO2 (1000 ppm × 37 °C) on a milled pistachio-based medium. A comparison was made of the effects of non-acclimatized strains and those that were acclimatized when colonizing layers of pistachio nuts exposed to 35 or 37 °C, 400 or 1000 ppm CO2, and 0.93 or 0.98 water activity (aw), respectively. Acclimatization influenced the fitness in terms of the growth of one strain, while there was no significant effect on the other strain when colonizing pistachio nuts. AFB1, production was significantly stimulated after ten days colonization when comparing the non-acclimatized and the acclimatized AB3 strain. However, there was no significant increase when comparing these for strain AB10. This suggests that there may be inter-strain differences in the effects of acclimatization and this could have a differential influence on the mycotoxin contamination of such commodities.


Author(s):  
Birgitta Maria Kunz ◽  
Laura Pförtner ◽  
Stefan Weigel ◽  
Sascha Rohn ◽  
Anselm Lehmacher ◽  
...  

AbstractPhomopsins are mycotoxins mainly infesting lupines, with phomopsin A (PHOA) being the main mycotoxin. PHOA is produced by Diaporthe toxica, formerly assigned as toxigenic Phomopsis leptostromiformis, causing infections in lupine plants and harvested seeds. However, Diaporthe species may also grow on other grain legumes, similar to Aspergillus westerdijkiae as an especially potent ochratoxin A (OTA) producer. Formation of PHOA and OTA was investigated on whole field peas as model system to assess fungal growth and toxin production at adverse storage conditions. Field pea samples were inoculated with the two fungal strains at two water activity (aw) values of 0.94 and 0.98 and three different levels of 30, 50, and 80% relative air humidity.After 14 days at an aw value of 0.98, the fungi produced 4.49 to 34.3 mg/kg PHOA and 1.44 to 3.35 g/kg OTA, respectively. Strains of D. toxica also tested showed higher PHOA concentrations of 28.3 to 32.4 mg/kg.D. toxica strains did not grow or produce PHOA at an aw values of 0.94, while A. westerdijkiae still showed growth and OTA production.Elevated water activity has a major impact both on OTA and, even more pronouncedly, on PHOA formation and thus, proper drying and storage of lupins as well as other grain legumes is crucial for product safety.


Sign in / Sign up

Export Citation Format

Share Document