TABLE OF GROUND STATE PROPERTIES OF NUCLEI IN THE RMF MODEL

2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.

2013 ◽  
Vol 22 (05) ◽  
pp. 1350025 ◽  
Author(s):  
G. SAXENA ◽  
D. SINGH

Encouraged by the success of relativistic mean-field plus BCS (RMF + BCS) approach for the description of the ground state properties of the chains of isotopes of proton magic nuclei with proton number Z = 8, 20, 28, 50 and 82 as well as those of proton sub-magic nuclei with Z = 40, we have further employed it, in an analogous manner, for a detailed calculations of the ground state properties of the neutron magic isotones with neutron number N = 8, 20, 28, 50, 82 and 126 as well as those of neutron sub-magic isotones with N = 40 using the TMA force parametrizations in order to explore low lying resonance and other exotic phenomenon near drip-lines. The results of these calculations for wave function, single particle pairing gaps etc. are presented here to demonstrate the general validity of our RMF + BCS approach. It is found that, in some of the proton-rich nuclei in the vicinity of the proton drip-line, the main contribution to the pairing correlations is provided by the low-lying resonant states, in addition to the contributions coming from the states close to the Fermi surface, which results extended proton drip-line for isotonic chain.


2004 ◽  
Vol 13 (03) ◽  
pp. 647-696 ◽  
Author(s):  
H. L. YADAV ◽  
M. KAUSHIK ◽  
H. TOKI

Recently, it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree–Bogoliubov (RHB) description of the ground state properties of drip-line neutron rich nuclei. The applicability of the RMF+BCS approach even for the drip-line nuclei is essentially due to the fact that the main contribution to the pairing correlations for the neutron rich nuclei is provided by the low-lying resonant states, in addition to the contributions coming from the states close to the Fermi surface. In order to show the general validity of this approach we present the results of our detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA force parameter set has been used for the effective mean-field Lagrangian with nonlinear terms for the sigma and omega mesons. Further, to check the validity of our treatment for different mean-field descriptions, calculations have also been carried out for the NL-SH force parametrization usually employed for the description of drip-line nuclei. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. In particular, the Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. This is mainly caused by the pairing correlations and results in the existence of bound states of extremely neutron rich exotic nuclei. Similar characteristics, though less pronounced, are also exhibited by neutron rich Zr isotopes. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree–Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach for the description of nuclei including those near the drip-lines.


2004 ◽  
Vol 19 (29) ◽  
pp. 2171-2190 ◽  
Author(s):  
L. S. GENG ◽  
H. TOKI ◽  
J. MENG

The ground-state properties of Zr and Sn isotopes are studied within the relativistic mean field theory. Zr and Sn isotopes have received tremendous attention due to various reasons, including the predicted giant halos in the neutron-rich Zr isotopes, the unique feature of being robustly spherical in the region of 100 Sn ~132 Sn and the particular interest of Sn isotopes to nuclear astrophysics. Furthermore, four (semi-) magic neutron numbers, 40, 50, 82 and 126, make these two isotopic chains particularly important to test the pairing correlations and the deformations in a microscopic model. In the present work, we carry out a systematic study of Zr and Sn isotopes from the proton drip line to the neutron drip line with deformation effects, pairing correlations and blocking effects for nuclei with odd number of neutrons properly treated. A constrained calculation with quadrupole deformations is performed to find the absolute minimum for each nucleus on the deformation surface. All ground-state properties, including the separation energies, the odd–even staggerings, the nuclear radii, the deformations and the single-particle spectra are analyzed and discussed in detail.


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

2011 ◽  
Vol 20 (11) ◽  
pp. 2293-2303 ◽  
Author(s):  
PROVASH MALI

The ground state properties namely the binding energy, the root mean square (rms) radius (neutron, proton and charge) and the deformation parameter of 45 newly identified neutron-rich isotopes in the A~71–152 mass region have been predicted in the relativistic mean filed (RMF) framework along with the Bardeen–Cooper–Schrieffer (BCS) type of pairing. Validity of the RMF results with the NL3 effective force are tested for odd-A Zn and Rh isotopic chains without taking the time reversal symmetry breaking effects into consideration. The RMF prediction on the binding energies are in good agreement with the empirical/finite-range droplet model calculation. The shell effects on the rms radii of odd-A Zn and Rh isotopes are nicely reproduced. The possibility of shape-coexistence in the newly identified nuclei is discussed.


2011 ◽  
Vol 20 (02) ◽  
pp. 252-258 ◽  
Author(s):  
LUDOVIC BONNEAU ◽  
JULIEN LE BLOAS ◽  
PHILIPPE QUENTIN ◽  
NIKOLAY MINKOV

In self-consistent mean-field approaches, the description of odd-mass nuclei requires to break the time-reversal invariance of the underlying one-body hamiltonian. This induces a polarization of the even-even core to which the odd nucleon is added. To properly describe the pairing correlations (in T = 1 and T = 0 channels) in such nuclei, we implement the particle-number conserving Higher Tamm–Dancoff approximation with a residual δ interaction in each isospin channel by restricting the many-body basis to two-particle–two–hole excitations of pair type (nn, pp and np) on top of the Hartree–Fock solution. We apply this approach to the calculation of two ground-state properties of well-deformed nuclei |Tz| = 1 nuclei around 24 Mg and 48 Cr , namely the isovector odd-even binding-energy difference and the magnetic dipole moment, focusing on the impact of pairing correlations.


Sign in / Sign up

Export Citation Format

Share Document