SPECTRAL DECOMPOSITION OF R-MATRICES FOR EXCEPTIONAL LIE ALGEBRAS

1991 ◽  
Vol 06 (10) ◽  
pp. 923-927 ◽  
Author(s):  
S.M. SERGEEV

In this paper spectral decompositions of R-matrices for vector representations of exceptional algebras are found.

2019 ◽  
Vol 62 (S1) ◽  
pp. S14-S27 ◽  
Author(s):  
ISABEL CUNHA ◽  
ALBERTO ELDUQUE

AbstractThe exceptional simple Lie algebras of types E7 and E8 are endowed with optimal $\mathsf{SL}_2^n$ -structures, and are thus described in terms of the corresponding coordinate algebras. These are nonassociative algebras which much resemble the so-called code algebras.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


1992 ◽  
Vol 59 (4) ◽  
pp. 762-773 ◽  
Author(s):  
S. Sutcliffe

The elasticity tensor in anisotropic elasticity can be regarded as a symmetric linear transformation on the nine-dimensional space of second-order tensors. This allows the elasticity tensor to be expressed in terms of its spectral decomposition. The structures of the spectral decompositions are determined by the sets of invariant subspaces that are consistent with material symmetry. Eigenvalues always depend on the values of the elastic constants, but the eigenvectors are, in part, independent of these values. The structures of the spectral decompositions are presented for the classical symmetry groups of crystallography, and numerical results are presented for representative materials in each group. Spectral forms for the equilibrium equations, the acoustic tensor, and the stored energy function are also derived.


2016 ◽  
Vol 19 (1) ◽  
pp. 235-258 ◽  
Author(s):  
David I. Stewart

Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.


1974 ◽  
Vol 6 (1) ◽  
pp. 112-113
Author(s):  
P. J. Higgins

Sign in / Sign up

Export Citation Format

Share Document