$B_0\bar B_0$-Mixing Involving Supersymmetry

1997 ◽  
Vol 12 (06) ◽  
pp. 419-426 ◽  
Author(s):  
J. Urban ◽  
F. Krauss ◽  
Ch. Hofmann ◽  
G. Soff

We calculate all relevant Feynman-diagrams in lowest order for [Formula: see text]-mixing. We add to the Standard Model (SM) two scalar Higgs-doublets and take into account the Minimal Supersymmetric Standard Model (MSSM). Within the Standard Model which has been extended by two Higgs-doublets we find the following relation between the Higgs-mass and its vacuum expectation value (vev): mH=5000/7(au-0.43). Inclusion of the MSSM pushes the value of Vtd to the lower edge of the experimentally allowed range.

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2006 ◽  
Vol 21 (26) ◽  
pp. 5205-5220 ◽  
Author(s):  
PRASANTA KUMAR DAS

We investigate the Randall–Sundrum model with a light stabilized radion (required to fix the size of the extra dimension) in the light of muon anomalous magnetic moment [Formula: see text]. Using the recent data (obtained from the E821 experiment of the BNL Collaboration) which differs by 2.6σ from the Standard Model result, we obtain constraints on radion mass mϕ and radion vacuum expectation value 〈ϕ〉. In the presence of a radion the beta functions β(λ) and β(gt) of Higgs quartic coupling (λ) and top-Yukawa coupling (gt) gets modified. We find these modified beta functions. Using these beta functions together with the anomaly constrained mϕ and 〈ϕ〉, we obtain lower bound on Higgs mass mh. We compare our result with the present LEP2 bound on mh.


2008 ◽  
Vol 23 (09) ◽  
pp. 647-652 ◽  
Author(s):  
ERNEST MA

This review deals with the recent resurgence of interest in adding a second scalar doublet (η+, η0) to the Standard Model of particle interactions. In most studies, it is taken for granted that η0 should have a nonzero vacuum expectation value, even if it may be very small. What if there is an exactly conserved symmetry which ensures 〈η0 〉 = 0? The phenomenological ramifications of this idea include dark matter, radiative neutrino mass, leptogenesis, and grand unification.


1992 ◽  
Vol 07 (04) ◽  
pp. 279-292 ◽  
Author(s):  
HEINZ KÖNIG

We present a detailed calculation of the contribution ∆aμ to the anomalous magnetic moment of the muon, when charginos and neutralinos are taken into account inside the relevant penguin diagrams. We consider the minimal supersymmetric standard model and include spontaneous R-parity breaking through the vacuum expectation value ντ of the scalar tau neutrino [Formula: see text]. We show that R-parity breaking leads to a result for Δaμ, which is less than a factor 10 below the experimental value.


2008 ◽  
Vol 17 (01) ◽  
pp. 276-281 ◽  
Author(s):  
MAREK GÓŹDŹ ◽  
WIESŁAW A. KAMIŃSKI

We present analytic expressions corresponding to a set of one loop Feynman diagrams, built within R-parity violating (RpV) minimal supersymmetric standard model (MSSM). Diagrams involve both bilinear and trilinear RpV couplings and represent Majorana neutrino masses and magnetic moments.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
M. Gogberashvili

We suggest using Einstein’s static universe metric for the metastable state after reheating, instead of the Friedman-Robertson-Walker spacetime. In this case, strong static gravitational potential leads to the effective reduction of the Higgs vacuum expectation value, which is found to be compatible with the Standard Model first-order electroweak phase transition conditions. Gravity could also increase the CP-violating effects for particles that cross the new phase bubble walls and thus is able to lead to the successful electroweak baryogenesis scenario.


Sign in / Sign up

Export Citation Format

Share Document