quartic coupling
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
José Eliel Camargo-Molina ◽  
Rikard Enberg ◽  
Johan Löfgren

Abstract A first-order Electroweak Phase Transition (EWPT) could explain the observed baryon-antibaryon asymmetry and its dynamics could yield a detectable gravitational wave signature, while the underlying physics would be within the reach of colliders. The Standard Model, however, predicts a crossover transition. We therefore study the EWPT in the Standard Model Effective Field Theory (SMEFT) including dimension-six operators. A first-order EWPT has previously been shown to be possible in the SMEFT. Phenomenology studies have focused on scenarios with a tree-level barrier between minima, which requires a negative Higgs quartic coupling and a new physics scale low enough to raise questions about the validity of the EFT approach. In this work we stress that a first-order EWPT is also possible when the barrier between minima is generated radiatively, the quartic coupling is positive, the scale of new physics is higher, and there is good agreement with experimental bounds. Our calculation is done in a consistent, gauge-invariant way, and we carefully analyze the scaling of parameters necessary to generate a barrier in the potential. We perform a global fit in the relevant parameter space and explicitly find the points with a first-order transition that agree with experimental data. We also briefly discuss the prospects for probing the allowed parameter space using di-Higgs production in colliders.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Johannes Braathen ◽  
Mark D. Goodsell ◽  
Sebastian Paßehr ◽  
Emanuelle Pinsard

AbstractWe consider the application of a Fleischer–Jegerlehner-like treatment of tadpoles to the calculation of neutral scalar masses (including the Higgs) in general theories beyond the Standard Model. This is especially useful when the theory contains new scalars associated with a small expectation value, but comes with its own disadvantages. We show that these can be overcome by combining with effective field theory matching. We provide the formalism in this modified approach for matching the quartic coupling of the Higgs via pole masses at one loop, and apply it to both a toy model and to the $$\mu $$ μ NMSSM as prototypes where the standard treatment can break down.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Vera-Maria Enckell ◽  
Sami Nurmi ◽  
Syksy Räsänen ◽  
Eemeli Tomberg

Abstract We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling λ and the top Yukawa coupling yt, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling ξ.The spectral index ns can take any value in the observationally allowed range. The lower limit for the running is αs> −3.5 × 10−3, and αs can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is 2.2×10−17< r < 2 × 10−5. We find that slow-roll can be violated near the feature, and a possible period of ultra-slow-roll contributes to the widening of the range of CMB predictions. Nevertheless, for the simplest tree-level action, the Palatini formulation remains distinguishable from the metric formulation even when quantum corrections are taken into account, because of the small tensor-to-scalar ratio.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Anson Hook

Abstract We demonstrate that the physics which resolves naturalness problems need not take the form of new particles and can sometimes manifest itself as higher dimensional operators. As a proof of principle, we present a simple model where the scale of new particles is parametrically separated from that estimated via naturalness arguments applied to self-quartic couplings. In this example, new particles appear far above the scale $$ m/\sqrt{\lambda } $$ m / λ , where m is the mass of the particle and λ is its self-quartic coupling. The shift symmetry responsible for resolving the naturalness problem involves higher dimensional operators rather than new particles.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Matthijs Hogervorst ◽  
Chiara Toldo

Abstract We study fixed points with N scalar fields in 4 − ε dimensions to leading order in ε using a bottom-up approach. We do so by analyzing O(N) invariants of the quartic coupling λijkl that describes such CFTs. In particular, we show that λiijj and $$ {\lambda}_{ijkl}^2 $$ λ ijkl 2 are restricted to a specific domain, refining a result by Rychkov and Stergiou. We also study averages of one-loop anomalous dimensions of composite operators without gradients. In many cases, we are able to show that the O(N) fixed point maximizes such averages. In the final part of this work, we generalize our results to theories with N complex scalars and to bosonic QED. In particular we show that to leading order in ε, there are no bosonic QED fixed points with N < 183 flavors.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Carlos A. R. Herdeiro ◽  
Sarah Kahlen ◽  
Jutta Kunz ◽  
Alexandre M. Pombo ◽  
...  

AbstractEinstein–Maxwell-scalar models allow for different classes of black hole solutions, depending on the non-minimal coupling function $$f(\phi )$$ f ( ϕ ) employed, between the scalar field and the Maxwell invariant. Here, we address the linear mode stability of the black hole solutions obtained recently for a quartic coupling function, $$f(\phi )=1+\alpha \phi ^4$$ f ( ϕ ) = 1 + α ϕ 4 (Blázquez-Salcedo et al. in Phys. Lett. B 806:135493, 2020). Besides the bald Reissner–Nordström solutions, this coupling allows for two branches of scalarized black holes, termed cold and hot, respectively. For these three branches of black holes we calculate the spectrum of quasinormal modes. It consists of polar scalar-led modes, polar and axial electromagnetic-led modes, and polar and axial gravitational-led modes. We demonstrate that the only unstable mode present is the radial scalar-led mode of the cold branch. Consequently, the bald Reissner–Nordström branch and the hot scalarized branch are both mode-stable. The non-trivial scalar field in the scalarized background solutions leads to the breaking of the degeneracy between axial and polar modes present for Reissner–Nordström solutions. This isospectrality is only slightly broken on the cold branch, but it is strongly broken on the hot branch.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Teresa Bautista ◽  
Lorenzo Casarin ◽  
Hadi Godazgar

Abstract Motivated by the goal of applying the average null energy condition (ANEC) to renormalisation group flows, we calculate in λϕ4 theory the expectation value of the ANEC operator in a particular scalar state perturbatively up to third order in the quartic coupling and verify the expected CFT answer. The work provides the technical tools for studying the expectation value of the ANEC operator in more interesting states, for example tensorial states relevant to the Hofman-Maldacena collider bounds, away from critical points.


2021 ◽  
Vol 812 ◽  
pp. 136004
Author(s):  
Mads Toudal Frandsen ◽  
Wei-Chih Huang
Keyword(s):  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
David Dunsky ◽  
Lawrence J. Hall ◽  
Keisuke Harigaya

Abstract The standard model Higgs quartic coupling vanishes at (109 − 1013) GeV. We study SU(2)L× SU(2)R× U(1)B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, vR. Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2)R× U(1)B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require vR to be in the range (1010− 1013) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires vR ≳ 109 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.


Sign in / Sign up

Export Citation Format

Share Document