parity breaking
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 8)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lam Hui ◽  
Alessandro Podo ◽  
Luca Santoni ◽  
Enrico Trincherini

Abstract We develop the effective theory for perturbations around black holes with scalar hair, in two directions. First, we show that the scalar-Gauss-Bonnet theory, often used as an example exhibiting scalar black hole hair, can be deformed by galileon operators leading to order unity changes to its predictions. The effective theory for perturbations thus provides an efficient framework for describing and constraining broad classes of scalar-tensor theories, of which the addition of galileon operators is an example. Second, we extend the effective theory to perturbations around an axisymmetric, slowly rotating black hole, at linear order in the black hole spin. We also discuss the inclusion of parity-breaking operators in the effective theory.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Anjan S. Joshipura ◽  
Ketan M. Patel

Abstract Possibility of a Right-Handed (RH) neutrino being a Goldstone fermion of a spontaneously broken global U(1) symmetry in a supersymmetric theory is considered. This fermion obtains mass from the supergravity effects leading to a RH neutrino at the electroweak scale with a mass similar to the gravitino mass. A prototype model realizing this scenario contains just three gauge singlet superfields needed for the type I seesaw mechanism. Masses of the other two neutrinos are determined by the U(1) breaking scale which too can be around the electroweak scale. Light neutrinos obtain their masses in this scenario through (a) mixing with the RH neutrinos (type I seesaw), (b) mixing with neutralinos (R-parity breaking), (c) indirectly through mixing of the RH neutrinos with neutralinos, and (d) radiative corrections. All these contributions are described by the same set of a small number of underlying parameters and provide a very constrained and predictive framework for the neutrino masses which is investigated in detail for various choices of U(1) symmetries. It is found that flavour independent U(1) symmetries cannot describe neutrino masses if the soft supersymmetry breaking terms are flavour universal and one needs to consider flavour dependent symmetries. Considering a particular example of Lμ− Lτ symmetry, it is shown that viable neutrino masses and mixing can be obtained without introducing any flavour violation in the soft sector. The leptonic couplings of Majoron are worked out in the model and shown to be consistent with various laboratory, astrophysical and cosmological constraints. The neutrino data allows sizeable couplings between the RH neutrinos and Higgsinos which can be used to probe the pseudo-Goldstone fermion at colliders through its displaced decay vertex.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Nathaniel Craig ◽  
Isabel Garcia Garcia ◽  
Giacomo Koszegi ◽  
Amara McCune

Abstract Parity solutions to the strong CP problem are a compelling alternative to approaches based on Peccei-Quinn symmetry, particularly given the expected violation of global symmetries in a theory of quantum gravity. The most natural of these solutions break parity at a low scale, giving rise to a host of experimentally accessible signals. We assess the status of the simplest parity-based solution in light of LHC data and flavor constraints, highlighting the prospects for near-future tests at colliders, tabletop experiments, and gravitational wave observatories. The origin of parity breaking and associated gravitational effects play crucial roles, providing new avenues for discovery through EDMs and gravity waves. These experimental opportunities underline the promise of generalized parity, rather than Peccei-Quinn symmetry, as a robust and testable solution to the strong CP problem.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Takuya Kanazawa ◽  
Mario Kieburg ◽  
Jacobus J.M. Verbaarschot

Abstract We investigate a model of interacting Dirac fermions in 2 + 1 dimensions with M flavors and N colors having the U(M)×SU(N ) symmetry. In the large-N limit, we find that the U(M) symmetry is spontaneously broken in a variety of ways. In the vacuum, when the parity-breaking flavor-singlet mass is varied, the ground state undergoes a sequence of M first-order phase transitions, experiencing M + 1 phases characterized by symmetry breaking U(M)→U(M − k)×U(k) with k ∈ {0, 1, 2, · · · , M}, bearing a close resemblance to the vacuum structure of three-dimensional QCD. At finite temperature and chemical potential, a rich phase diagram with first and second-order phase transitions and tricritical points is observed. Also exotic phases with spontaneous symmetry breaking of the form as U(3)→U(1)3, U(4)→U(2)×U(1)2, and U(5)→U(2)2×U(1) exist. For a large flavor-singlet mass, the increase of the chemical potential μ brings about M consecutive first-order transitions that separate the low-μ phase diagram with vanishing fermion density from the high-μ region with a high fermion density.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
Shangbin Yang ◽  
V. V. Pipin ◽  
D. D. Sokoloff ◽  
K. M. Kuzanyan ◽  
Hongqi Zhang

In this paper we study the effects of the net magnetic helicity density on the hemispheric symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes into account the nonlinear effect of magnetic helicity conservation. We find that, on the surface, the net magnetic helicity follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $\unicode[STIX]{x1D6FC}$ -effect and the helicity fluxes can invert the causal relationship, i.e. the net magnetic helicity or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.


Author(s):  
Alexander Andrianov ◽  
Vladimir Andrianov ◽  
Domenec Espriu

We compare Chiral Perturbation Theory (ChPT) and the Linear Sigma Model (LSM) as realizations of low energy QCD for light mesons in a chirally imbalanced medium. The relations between the low-energy constants of the Chiral Lagrangian and the corresponding constants of the Linear Sigma Model are established as well as the expressions for the decay constant of $\pi $-meson in the medium and for the mass of the $a_0$. In the large $N_c$ count taken from QCD the correspondence of ChPT and LSM is remarkably good and give a solid ground for search of chiral imbalance manifestation in pion physics. A possible experimental detection of chiral imbalance (and therefore a phase with Local Parity Breaking) is outlined in the charged pion decays inside the fireball.


2018 ◽  
Vol 30 (41) ◽  
pp. 415504 ◽  
Author(s):  
Hu Zhang ◽  
Bei Deng ◽  
Wei-Chao Wang ◽  
Xing-Qiang Shi

2018 ◽  
Vol 121 (3) ◽  
Author(s):  
H. Miao ◽  
T. T. Zhang ◽  
L. Wang ◽  
D. Meyers ◽  
A. H. Said ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document