BORN'S RECIPROCAL GENERAL RELATIVITY THEORY AND COMPLEX NON-ABELIAN GRAVITY AS GAUGE THEORY OF THE QUAPLECTIC GROUP: A NOVEL PATH TO QUANTUM GRAVITY

2008 ◽  
Vol 23 (10) ◽  
pp. 1487-1506 ◽  
Author(s):  
CARLOS CASTRO

Born's reciprocal relativity in flat space–times is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved space–times and construct a reciprocal general relativity theory (in curved space–times) as a local gauge theory of the quaplectic group and given by the semidirect product [Formula: see text], where the non-Abelian Weyl–Heisenberg group is H(1, 3). The gauge theory has the same structure as that of complex non-Abelian gravity. Actions are presented and it is argued why such actions based on Born's reciprocal relativity principle, involving a maximal speed limit and a maximal proper force, is a very promising avenue to quantize gravity that does not rely in breaking the Lorentz symmetry at the Planck scale, in contrast to other approaches based on deformations of the Poincaré algebra, quantum groups. It is discussed how one could embed the quaplectic gauge theory into one based on the U(1, 4), U(2, 3) groups where the observed cosmological constant emerges in a natural way. We conclude with a brief discussion of complex coordinates and Finsler spaces with symmetric and nonsymmetric metrics studied by Eisenhart as relevant closed-string target space backgrounds where Born's principle may be operating.

2005 ◽  
Vol 14 (06) ◽  
pp. 995-1008 ◽  
Author(s):  
FABRIZIO PINTO

It has been known shortly after the introduction of the general relativity theory that the electrostatic Coulomb potential of a point charge supported in a gravitational field is not spherically symmetric and becomes warped in curved space. Under ordinary laboratory conditions, this effect is quite small and has never been directly observed. Surprisingly, this distortion causes the appearance of a hitherto unknown, topologically complex non-central van der Waals force whose detection is well within range of existing trapped atom interferometry techniques. This will allow for an unexpected experimental test of gravity theory by means of quantum-electro-dynamical interatomic forces.


2011 ◽  
Vol 26 (21) ◽  
pp. 3653-3678 ◽  
Author(s):  
CARLOS CASTRO

We explore some novel consequences of Born's reciprocal relativity theory in flat phase-space and generalize the theory to the curved space–time scenario. We provide, in particular, six specific results resulting from Born's reciprocal relativity and which are not present in special relativity. These are: momentum-dependent time delay in the emission and detection of photons; energy-dependent notion of locality; superluminal behavior; relative rotation of photon trajectories due to the aberration of light; invariance of areas-cells in phase-space and modified dispersion relations. We finalize by constructing a Born reciprocal general relativity theory in curved space–time which requires the introduction of a complex Hermitian metric, torsion and nonmetricity. The latter procedure can be extended to the curved phase-space scenario.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


1983 ◽  
Vol 51 (1) ◽  
pp. 92-93 ◽  
Author(s):  
H. A. Buchdahl ◽  
Daniel M. Greenberger

Author(s):  
Jin Tong Wang ◽  
Jiangdi Fan ◽  
Aaron X. Kan

It has been well known that there is a redshift of photon frequency due to the gravitational potential. Scott et al. [Can. J. Phys. 44 (1966) 1639, https://doi.org/10.1139/p66-137 ] pointed out that general relativity theory predicts the gravitational redshift. However, using the quantum mechanics theory related to the photon Hamiltonian and photon Schrodinger equation, we calculate the redshift due to the gravitational potential. The result is exactly the same as that from the general relativity theory.


Sign in / Sign up

Export Citation Format

Share Document