Quadratic Poincar� gauge theory of gravity: A comparison with the general relativity theory

1989 ◽  
Vol 21 (11) ◽  
pp. 1107-1142 ◽  
Author(s):  
Yu. N. Obukhov ◽  
V. N. Ponomariev ◽  
V. V. Zhytnikov
2008 ◽  
Vol 23 (10) ◽  
pp. 1487-1506 ◽  
Author(s):  
CARLOS CASTRO

Born's reciprocal relativity in flat space–times is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved space–times and construct a reciprocal general relativity theory (in curved space–times) as a local gauge theory of the quaplectic group and given by the semidirect product [Formula: see text], where the non-Abelian Weyl–Heisenberg group is H(1, 3). The gauge theory has the same structure as that of complex non-Abelian gravity. Actions are presented and it is argued why such actions based on Born's reciprocal relativity principle, involving a maximal speed limit and a maximal proper force, is a very promising avenue to quantize gravity that does not rely in breaking the Lorentz symmetry at the Planck scale, in contrast to other approaches based on deformations of the Poincaré algebra, quantum groups. It is discussed how one could embed the quaplectic gauge theory into one based on the U(1, 4), U(2, 3) groups where the observed cosmological constant emerges in a natural way. We conclude with a brief discussion of complex coordinates and Finsler spaces with symmetric and nonsymmetric metrics studied by Eisenhart as relevant closed-string target space backgrounds where Born's principle may be operating.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650097
Author(s):  
Carlos Castro

After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann–Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the [Formula: see text] cotangent bundle [Formula: see text] of spacetime is explicitly constructed and based on the gauge group [Formula: see text] which acts on the tangent space to the cotangent bundle [Formula: see text] at each point [Formula: see text]. Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.


1990 ◽  
Vol 22 (5) ◽  
pp. 511-524
Author(s):  
Qian Si-ming ◽  
Wu You-lin

1999 ◽  
Vol 14 (02) ◽  
pp. 93-97 ◽  
Author(s):  
L. C. GARCIA DE ANDRADE

The theory considered here is not Einstein general relativity, but is a Poincaré type gauge theory of gravity, therefore the Birkhoff theorem is not applied and the external solution is not vacuum spherically symmetric and tachyons may exist outside the core defect.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


Sign in / Sign up

Export Citation Format

Share Document