scholarly journals Galilean covariance, Casimir effect and Stefan–Boltzmann law at finite temperature

2017 ◽  
Vol 32 (16) ◽  
pp. 1750094 ◽  
Author(s):  
S. C. Ulhoa ◽  
A. F. Santos ◽  
Faqir C. Khanna

The Galilean covariance, formulated in 5-dimensions space, describes the nonrelativistic physics in a way similar to a Lorentz covariant quantum field theory being considered for relativistic physics. Using a nonrelativistic approach the Stefan–Boltzmann law and the Casimir effect at finite temperature for a particle with spin zero and 1/2 are calculated. The thermo field dynamics is used to include the finite temperature effects.

2020 ◽  
Vol 35 (13) ◽  
pp. 2050066
Author(s):  
A. F. Santos ◽  
S. C. Ulhoa ◽  
Faqir C. Khanna

This paper deals with quantum field theory in curved space–time using the Thermo Field Dynamics. The scalar field is coupled to the Schwarzschild space–time and then thermalized. The Stefan–Boltzmann law is established at finite temperature and the entropy of the field is calculated. Then the Casimir energy and pressure are obtained at zero and finite temperature.


1989 ◽  
Vol 01 (01) ◽  
pp. 113-128 ◽  
Author(s):  
E. ELIZALDE ◽  
A. ROMEO

We study expressions for the regularization of general multidimensional Epstein zeta-functions of the type [Formula: see text] After reviewing some classical results in the light of the extended proof of zeta-function regularization recently obtained by the authors, approximate but very quickly convergent expressions for these functions are derived. This type of analysis has many interesting applications, e.g. in any quantum field theory defined in a partially compactified Euclidean spacetime or at finite temperature. As an example, we obtain the partition function for the Casimir effect at finite temperature.


1982 ◽  
Vol 110 (5) ◽  
pp. 406-410 ◽  
Author(s):  
G. Peressutti ◽  
B.-S. Skagerstam

2017 ◽  
Vol 32 (22) ◽  
pp. 1750132 ◽  
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

In early 1970, it was postulated that there exists a zero spin quantum field, called Higgs field, that is present in all universe. The potential energy of the Higgs field is transferred to particles. Hence they acquire mass. These ideas were essential in fulfilling the basic need for a particle, called Higgs, with mass. These particles are called Higgs particles with spin zero with its mass to be [Formula: see text][Formula: see text]125 GeV. This raises the question as to its physical effects. If these particles are present, will they exhibit a Casimir effect and also obey the Stefan–Boltzmann Law? Assuming the dynamics of this field, will these effects change with temperature. The present calculation uses thermo field dynamics formalism to calculate temperature effects.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650122 ◽  
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

The Gravitoelectromagnetism (GEM) theory is considered in a Lagrangian formulation using the Weyl tensor components. A perturbative approach to calculate processes at zero temperature has been used. Here the GEM at finite temperature is analyzed using Thermo Field Dynamics, real time finite temperature quantum field theory. Transition amplitudes involving gravitons, fermions and photons are calculated for various processes. These amplitudes are likely of interest in astrophysics.


2006 ◽  
Vol 03 (07) ◽  
pp. 1303-1312 ◽  
Author(s):  
WEIGANG QIU ◽  
FEI SUN ◽  
HONGBAO ZHANG

From the modern viewpoint and by the geometric method, this paper provides a concise foundation for the quantum theory of massless spin-3/2 field in Minkowski spacetime, which includes both the one-particle's quantum mechanics and the many-particle's quantum field theory. The explicit result presented here is useful for the investigation of spin-3/2 field in various circumstances such as supergravity, twistor programme, Casimir effect, and quantum inequality.


1994 ◽  
Vol 09 (14) ◽  
pp. 2363-2409 ◽  
Author(s):  
H. CHU ◽  
H. UMEZAWA

We present a comprehensive review of the most fundamental and practical aspects of thermo-field dynamics (TFD), including some of the most recent developments in the field. To make TFD fully consistent, some suitable changes in the structure of the thermal doublets and the Bogoliubov transformation matrices have been made. A close comparison between TFD and the Schwinger-Keldysh closed time path formalism (SKF) is presented. We find that TFD and SKF are in many ways the same in form; in particular, the two approaches are identical in stationary situations. However, TFD and SKF are quite different in time-dependent nonequilibrium situations. The main source of this difference is that the time evolution of the density matrix itself is ignored in SKF while in TFD it is replaced by a time-dependent Bogoliubov transformation. In this sense TFD is a better candidate for time-dependent quantum field theory. Even in equilibrium situations, TFD has some remarkable advantages over the Matsubara approach and SKF, the most notable being the Feynman diagram recipes, which we will present. We will show that the calculations of two-point functions are simplified, instead of being complicated, by the matrix nature of the formalism. We will present some explicit calculations using TFD, including space-time inhomogeneous situations and the vacuum polarization in equilibrium relativistic QED.


Author(s):  
Jean Zinn-Justin

Some equilibrium properties in statistical quantum field theory (QFT), that is, relativistic QFT at finite temperature are reviewed. Study of QFT at finite temperature is motivated by cosmological problems, high energy heavy ion collisions, and speculations about possible phase transitions, also searched for in numerical simulations. In particular, the situation of finite temperature phase transitions, or the limit of high temperature (an ultra-relativistic limit where the temperature is much larger than the physical masses of particles) are discussed. The concept of dimensional reduction emerges, in many cases, statistical properties of finite-temperature QFT in (1, d − 1) dimensions can be described by an effective classical statistical field theory in (d − 1) dimensions. Dimensional reduction generalizes a property already observed in the non-relativistic example of the Bose gas, and indicates that quantum effects are less important at high temperature. The corresponding technical tools are a mode-expansion of fields in the Euclidean time variable, singling out the zero modes of boson fields, followed by a local expansion of the resulting (d − 1)-dimensional effective field theory (EFT). Additional physical intuition about QFT at finite temperature in (1, d−1) dimensions can be gained by considering it as a classical statistical field theory in d dimensions, with finite size in one dimension. This identification makes an analysis of finite temperature QFT in terms of the renormalization group (RG), and the theory of finite-size effects of the classical theory, possible. These ideas are illustrated with several simple examples, the φ4 field theory, the non-linear σ-model, the Gross–Neveu model and some gauge theories.


Sign in / Sign up

Export Citation Format

Share Document