Some quantum mechanical solutions in nonrelativistic anti-Snyder framework

2017 ◽  
Vol 32 (27) ◽  
pp. 1750170 ◽  
Author(s):  
Homa Shababi ◽  
Won Sang Chung

In this paper, we investigate nonrelativistic anti-Snyder model in momentum representation and obtain quantum mechanical eigenvalues and eigenfunctions. Using this framework, first, in one dimension, we study a particle in a box and the harmonic oscillator problems. Then, for more investigations, in three dimensions, the quantum mechanical eigenvalues and eigenfunctions of a free particle problem and the radius of the neutron star are obtained.

2016 ◽  
Vol 31 (18) ◽  
pp. 1650101 ◽  
Author(s):  
Homa Shababi ◽  
Pouria Pedram ◽  
Won Sang Chung

In this paper, we study two generalized uncertainty principles (GUPs) including [Formula: see text] and [Formula: see text] which imply minimal measurable lengths. Using two momentum representations, for the former GUP, we find eigenvalues and eigenfunctions of the free particle and the harmonic oscillator in terms of generalized trigonometric functions. Also, for the latter GUP, we obtain quantum mechanical solutions of a particle in a box and harmonic oscillator. Finally we investigate the statistical properties of the harmonic oscillator including partition function, internal energy, and heat capacity in the context of the first GUP.


2007 ◽  
Vol 16 (01) ◽  
pp. 189-198 ◽  
Author(s):  
SHI-HAI DONG ◽  
D. MORALES ◽  
J. GARCÍA-RAVELO

By using the exact quantization rule, we present analytical solutions of the Schrödinger equation for the deformed harmonic oscillator in one dimension, the Kratzer potential and pseudoharmonic oscillator in three dimensions. The energy levels of all the bound states are easily calculated from this quantization rule. The normalized wavefunctions are also obtained. It is found that the present approach can simplify the calculations.


2010 ◽  
pp. 138-157
Author(s):  
Siegmund Brandt ◽  
Hans Dieter Dahmen ◽  
Tilo Stroh

2005 ◽  
Vol 208 (1-2) ◽  
pp. 96-114 ◽  
Author(s):  
Stephan De Bièvre ◽  
Paul E. Parris ◽  
Alex Silvius

Author(s):  
Siegmund Brandt ◽  
Hans Dieter Dahmen

Author(s):  
Siegmund Brandt ◽  
Hans Dieter Dahmen

Sign in / Sign up

Export Citation Format

Share Document