quantization rule
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Nassima Benchtaber ◽  
David Sanchez ◽  
Llorenç Serra

Abstract We investigate the electronic confinement in bilayer graphene by topological loops of different shapes. These loops are created by lateral gates acting via gap inversion on the two graphene sheets. For large-area loops the spectrum is well described by a quantization rule depending only on the loop perimeter. For small sizes, the spectrum depends on the loop shape. We find that zero-energy states exhibit a characteristic pattern that strongly depends on the spatial symmetry. We show this by considering loops of higher to lower symmetry (circle, square, rectangle and irregular polygon). Interestingly, magnetic field causes valley splittings of the states, an asymmetry between energy reversal states, flux periodicities and the emergence of persistent currents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoonseok Hwang ◽  
Jun-Won Rhim ◽  
Bohm-Jung Yang

AbstractAccording to the Onsager’s semiclassical quantization rule, the Landau levels of a band are bounded by its upper and lower band edges at zero magnetic field. However, there are two notable systems where the Landau level spectra violate this expectation, including topological bands and flat bands with singular band crossings, whose wave functions possess some singularities. Here, we introduce a distinct class of flat band systems where anomalous Landau level spreading (LLS) appears outside the zero-field energy bounds, although the relevant wave function is nonsingular. The anomalous LLS of isolated flat bands are governed by the cross-gap Berry connection that measures the wave-function geometry of multi bands. We also find that symmetry puts strong constraints on the LLS of flat bands. Our work demonstrates that an isolated flat band is an ideal system for studying the fundamental role of wave-function geometry in describing magnetic responses of solids.


2021 ◽  
Vol 24 (3) ◽  
pp. 260-271
Author(s):  
E. M. Ovsiyuk ◽  
A. D. Koral’kov ◽  
A. V. Chichurin ◽  
V.M. Red’kov

The known systems of radial equations describing the relativistic hydrogen atom on the base of the Dirac equation in Lobachevsky hyperbolic space is solved. The relevant 2-nd order differential equation has six regular singular points, its solutions of Frobenius type are constructed explicitly. To produce the quantization rule for energy values we have used the known condition for determination of the transcendental Frobenius solutions. This defines the energy spectrum which is physically interpretable and similar to the spectrum arising for the scalar Klein-Fock-Gordon equation in Lobachevsky space. In the present paper, exact analytical solutions referring to this spectrum are constructed. Convergence of the series involved is proved analytically and numerically. Squared integrability of the solutions is demonstrated numerically. It is shown that the spectrum coincides precisely with that previously found within the semi-classical approximation.


2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


Author(s):  
E. M. Оvsiyuk ◽  
A. D. Koral’kov

The known systems of the radial equations describing the hydrogen atom on the basis of the Dirac equation in the Lobachevsky–Riemann spaces of constant curvature are investigated. In the both geometrical models, the differential equations of second order with six regular singular points are found, and their exact solutions of Frobenius type are constructed. To produce the quantization rule for energy values we use the known condition which separates the transcendental Frobenius solutions. This provides us with the energy spectra that are physically interpretable and are similar to those for the Klein–Fock–Gordon particle in these space models. These spectra are similar to those that previously have appeared in studying the same systems of the equations with the use of the semi-classical approximation.


2021 ◽  
Author(s):  
Halima Bachi ◽  
Samir Touloum ◽  
F. Z. Ighezou ◽  
Abdelhakim Gharbi

2021 ◽  
Vol 21 (3) ◽  
pp. 725
Author(s):  
Redi Kristian Pingak ◽  
Albert Zicko Johannes ◽  
Fidelis Nitti ◽  
Meksianis Zadrak Ndii

This study aims to apply a semi-classical approach using some analytically solvable potential functions to accurately compute the first ten pure vibrational energies of molecular hydrogen (H2) and its isotopes in their ground electronic states. This study also aims at comparing the accuracy of the potential functions within the framework of the semi-classical approximation. The performance of the approximation was investigated as a function of the molecular mass. In this approximation, the nuclei were assumed to move in a classical potential. The Bohr-Sommerfeld quantization rule was then applied to calculate the vibrational energies of the molecules numerically. The results indicated that the first vibrational transition frequencies (v1ß0) of all hydrogen isotopes were consistent with the experimental ones, with a minimum percentage error of 0.02% for ditritium (T2) molecule using the Modified-Rosen-Morse potential. It was also demonstrated that, in general, the Rosen-Morse and the Modified-Rosen-Morse potential functions were better in terms of calculating the vibrational energies of the molecules than Morse potential. Interestingly, the Morse potential was found to be better than the Manning-Rosen potential. Finally, the semi-classical approximation was found to perform better for heavier isotopes for all potentials applied in this study.


Sign in / Sign up

Export Citation Format

Share Document