scholarly journals Quantum electrodynamics with self-conjugated equations with spinor wave functions for fermion fields

Author(s):  
V. P. Neznamov ◽  
V. E. Shemarulin

Quantum electrodynamics (QED) with self-conjugated equations with spinor wave functions for fermion fields is considered. In the low order of the perturbation theory, matrix elements of some of QED physical processes are calculated. The final results coincide with cross-sections calculated in the standard QED. The self-energy of an electron and amplitudes of processes associated with determination of the anomalous magnetic moment of an electron and Lamb shift are calculated. These results agree with the results in the standard QED. Distinctive feature of the developed theory is the fact that only states with positive energies are present in the intermediate virtual states in the calculations of the electron self-energy, anomalous magnetic moment of an electron and Lamb shift. Besides, in equations, masses of particles and antiparticles have the opposite signs.

For over 40 years, optical and microwave spectroscopists, and atomic, nuclear and elementary particle physicists have been engaged in measuring the 2 2 S ½ -2 2 P ½ energy level separation in atomic hydrogen (the Lamb shift) and attempting to predict the splitting theoretically. The discrepancies encountered have influenced the development of theoretical methods of calculation in the areas of atomic structure, quantum electrodynamics and elementary particle physics. In this paper we present the results of a precision microwave determination of the Lamb shift, using a fast atomic beam and a single microwave interaction region. The value obtained is in substantial agreement with the earlier determinations and with the recent calculation by Mohr but is in disagreement with the earlier calculation by Erickson. This disagreement is further accentuated if recent modifications to the size of the proton are included, whereas the agreement with Mohr’s calculation is not affected. The experimental method uses a 21 keV beam of metastable 2 s hydrogen atoms which are obtained by charge exchange of a proton beam extracted from a radio frequency (r.f.) ion source. The experiment is performed in essentially zero magnetic field and uses a precision transmission line interaction region to induce r.f. transitions at the Lamb shift frequency. The result for the 2 2 S ½ F = 0 to 2 2 P ½ F = 1 interval in zero field is 909.904 ± 0.020 MHz corresponding to a Lamb shift of 1057.862 ± 0.020 MHz. The paper discusses the method and the host of corrections for systematic effects which need to be applied to the line centre, many of which have not been sufficiently understood or controlled in previous experiments. The paper is introduced with a brief survey of significant landmarks in calculation and measurement of the Lamb shift and concludes with a comparison of the present theoretical and experimental positions.


Atoms ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 28 ◽  
Author(s):  
Tatsumi Aoyama ◽  
Toichiro Kinoshita ◽  
Makiko Nio

The anomalous magnetic moment of the electron a e measured in a Penning trap occupies a unique position among high precision measurements of physical constants in the sense that it can be compared directly with the theoretical calculation based on the renormalized quantum electrodynamics (QED) to high orders of perturbation expansion in the fine structure constant α , with an effective parameter α / π . Both numerical and analytic evaluations of a e up to ( α / π ) 4 are firmly established. The coefficient of ( α / π ) 5 has been obtained recently by an extensive numerical integration. The contributions of hadronic and weak interactions have also been estimated. The sum of all these terms leads to a e ( theory ) = 1 159 652 181.606 ( 11 ) ( 12 ) ( 229 ) × 10 − 12 , where the first two uncertainties are from the tenth-order QED term and the hadronic term, respectively. The third and largest uncertainty comes from the current best value of the fine-structure constant derived from the cesium recoil measurement: α − 1 ( Cs ) = 137.035 999 046 ( 27 ) . The discrepancy between a e ( theory ) and a e ( ( experiment ) ) is 2.4 σ . Assuming that the standard model is valid so that a e (theory) = a e (experiment) holds, we obtain α − 1 ( a e ) = 137.035 999 1496 ( 13 ) ( 14 ) ( 330 ) , which is nearly as accurate as α − 1 ( Cs ) . The uncertainties are from the tenth-order QED term, hadronic term, and the best measurement of a e , in this order.


The title of this meeting, which refers to gauge theories, could equivalently have specified renormalizable quantum field theories. The first quantum field theory arose from the quantization by Dirac, Heisenberg and Pauli of Maxwell’s classical theory of electromagnetism. This immediately revealed the basic problem that although the smallness of the fine-structure constant appeared to give an excellent basis for a power-series expansion, corrections to lowest order calculations gave meaningless infinite results. Quantum electrodynamics (QED ) is, of course, an Abelian gauge theory, and the first major triumph o f fundamental physics after World War II was the removal of the infinities from the theory by the technique of renormalization developed by Schwinger, Feynman and Dyson, stimulated by the measurement of the Lamb shift and the anomalous magnetic moment of the electron. In the intervening years, especially through the beautiful experiments at Cern on the anomalous magnetic moment of the muon, the agreement between this theory and experiment has been pushed to the extreme technical limits of both measurement and calculation.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750175
Author(s):  
Ashok K. Das ◽  
Jorge Gamboa ◽  
Fernando Méndez ◽  
Natalia Tapia

We consider a model of dark quantum electrodynamics (QEDs) which is coupled to a visible photon through a kinetic mixing term. We compute the [Formula: see text] for the dark fermion, where [Formula: see text] is its gyromagnetic factor. We show that the [Formula: see text] of the dark fermion is related to the [Formula: see text] of (visible) QEDs through a constant which depends on the kinetic mixing factor. We determine [Formula: see text] as a function of the mass ratio [Formula: see text], where [Formula: see text] and [Formula: see text] denote the masses of the dark photon and the dark fermion, respectively, and we show how [Formula: see text] becomes very different for light and heavy fermions around [Formula: see text] eV.


2018 ◽  
Vol 166 ◽  
pp. 00012 ◽  
Author(s):  
Bastian Kubis

We discuss status and prospects of a dispersive analysis of the η and η′ transition form factors. Particular focus is put on the various pieces of experimental information that serve as input to such a calculation. These can help improve on the precision of an evaluation of the η and η′ pole contributions to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.


Sign in / Sign up

Export Citation Format

Share Document