Calculation of the Top-Quark Yukawa coupling constant

Author(s):  
P. Sadeghi Alavijeh ◽  
N. Tazimi ◽  
M. Monemzadeh

In this work, we study meson systems consisting of quark–antiquark. We solve Lippman–Schwinger equation numerically for heavy meson systems. We attempt to find a nonrelativistic potential model through which we can solve the quark–antiquark bound state problem. The coefficients obtained are in agreement with Martin potential coefficients. Via this method we also determine the strong coupling constant of Cornell and Yukawa potentials for the heavy meson.

1965 ◽  
Vol 35 (3) ◽  
pp. 913-932 ◽  
Author(s):  
G. Cosenza ◽  
L. Sertorio ◽  
M. Toller

1999 ◽  
Vol 59 (1) ◽  
pp. 46-52 ◽  
Author(s):  
R. D. Mota ◽  
A. Valcarce ◽  
F. Fernández ◽  
H. Garcilazo

1955 ◽  
Vol 13 (3) ◽  
pp. 338-340
Author(s):  
Takao Okabayashi

1984 ◽  
Vol 39 (6) ◽  
pp. 603-604 ◽  
Author(s):  
E. F. Hefter ◽  
I. A. Mitropolsky

Inverse methods are applied to the nuclear bound-state problem. Considering only the self-interactions of these states analytical solutions results for potentials and densities. The simplest possible approximation to the full expression yields immediately ⊿R0i2 ≡ 〈r2 (Ai)〉 - 〈r2 (A0)〉 ~ - [B (Ai) - B (A0)] for the differences in the squared nuclear radii as functions of the respective binding energies per nucleon, B (Ai).


Sign in / Sign up

Export Citation Format

Share Document