bound state problem
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Stanley A. Bruce

We address the bound-state dynamics of relativistic spin-1/2 neutral particles (in this paper, Dirac neutrinos) with anomalous magnetic dipole moment in the presence of an electromagnetic (EM) field described by a generalized Dirac–Pauli equation. This equation of motion is derived including appropriate couplings between Lorentz scalar and pseudoscalar fields with the EM field in the Lagrangian of the system. Specifically, we exactly solve the bound-state problem of neutrinos in the presence of a homogeneous magnetic field in cylindrical coordinates. We comment on the relevance of this approach to study Dirac neutrino self-interactions.


Author(s):  
M Kohno ◽  
K Miyagawa

Abstract The Ξ single-particle potential obtained in nuclear matter with the next-to-leading order baryon-baryon interactions in chiral effective field theory is applied to finite nuclei by an improved local-density approximation method. As a premise, phase shifts of ΞN elastic scattering and the results of Faddeev calculations for the ΞNN bound state problem are presented to show the properties of the ΞN interactions in the present parametrization. First, the Ξ states in 14N are revisited because of the recent experimental progress, including the discussion on the ΞN spin-orbit interaction that is relevant to the location of the p-state. Then the Ξ levels in 56Fe are calculated. In particular, the level shift which is expected to be measured experimentally in the near future is predicted. The smallness of the imaginary part of the Ξ single-particle potential is explicitly demonstrated.


Author(s):  
P. Sadeghi Alavijeh ◽  
N. Tazimi ◽  
M. Monemzadeh

In this work, we study meson systems consisting of quark–antiquark. We solve Lippman–Schwinger equation numerically for heavy meson systems. We attempt to find a nonrelativistic potential model through which we can solve the quark–antiquark bound state problem. The coefficients obtained are in agreement with Martin potential coefficients. Via this method we also determine the strong coupling constant of Cornell and Yukawa potentials for the heavy meson.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. F. Lo

AbstractWe have shown that the smallest possible singel-qubit critical coupling strength of the N-qubit two-photon Rabi model is only 1/N times that of the two-photon Rabi model. The spectral collapse can thus occur at a more attainable value of the critical coupling. For both of the two-qubit and three-qubit cases, we have also rigorously demonstrated that at the critical coupling the system not only has a set of discrete eigenenergies but also a continuous energy spectrum. The discrete eigenenergy spectrum can be derived via a simple one-to-one mapping to the bound state problem of a particle of variable effective mass in the presence of a finite potential well and a nonlocal potential. The energy difference of each qubit, which specifies both the depth of the finite potential well and the strength of the nonlocal potential, determines the number of bound states available, implying that the extent of the incomplete spectral collapse can be monitored in a straightforward manner.


2020 ◽  
Vol 37 (12) ◽  
pp. 121201
Author(s):  
Si-Xue Qin ◽  
C. D. Roberts

2020 ◽  
Vol 241 ◽  
pp. 02002
Author(s):  
Chen Chen

A continuum approach to the three valence-quark bound-state problem in quantum field theory, employing parametrisations of the necessary kernel elements, is used to compute the spectrum and Poincarö- covariant wave functions for all flavour-SU(3) octet and decuplet baryons and their first positive-parity ex citations. Such analyses predict the existence of nonpointlike, dynamical quark-quark (diquark) correlations within all baryons; and a uniformly sound description of the systems studied is obtained by retaining flavour- antitriplet-scalar and flavour-sextet-pseudovector diquarks. The analysis predicts the existence of positive- parity excitations of the 𝚵, 𝚵*, Ω baryons, with masses, respectively (in GeV): 1.84(08), 1.89(04), 2.05(02). These states have not yet been empirically identified. This body of analysis suggests that the expression of emergent mass generation is the same in all u, d, s baryons and, notably, that dynamical quark-quark correla tions play an essential role in the structure of each one. It also provides the basis for developing an array of predictions that can be tested in new generation experiments.


2020 ◽  
Vol 241 ◽  
pp. 02008
Author(s):  
Craig D. Roberts

One of the greatest challenges within the Standard Model is to discover the source of visible mass. Indeed, this is the focus of a “Millennium Problem”, posed by the Clay Mathematics Institute. The answer is hidden within quantum chromodynamics (QCD); and it is probable that revealing the origin of mass will also explain the nature of confinement. In connection with these issues, this perspective will describe insights that have recently been drawn using contemporary methods for solving the continuum bound-state problem in relativistic quantum field theory and how they have been informed and enabled by modern experiments on nucleon-resonance electroproduction.


Sign in / Sign up

Export Citation Format

Share Document