ON THE GEOMETRIZATION OF BOHMIAN MECHANICS: A NEW APPROACH TO QUANTUM GRAVITY

1998 ◽  
Vol 13 (04) ◽  
pp. 677-693 ◽  
Author(s):  
FATIMAH SHOJAI ◽  
MEHDI GOLSHANI

In this paper, a new approach to quantum gravity is presented in which the de-Broglie–Bohm quantum theory of motion is geometrized. This way of considering quantum gravity leads automatically to the fact that the quantum effects are contained in the conformal degree of freedom of the space–time metric. The present theory is then applied to the maximally symmetric space–time of cosmology, and it is observed that it is possible to avoid the initial singularity, while at large times the correct classical limit emerges.

2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2020 ◽  
Vol 35 (14) ◽  
pp. 2050070 ◽  
Author(s):  
Ward Struyve

Semi-classical theories are approximations to quantum theory that treat some degrees of freedom classically and others quantum mechanically. In the usual approach, the quantum degrees of freedom are described by a wave function which evolves according to some Schrödinger equation with a Hamiltonian that depends on the classical degrees of freedom. The classical degrees of freedom satisfy classical equations that depend on the expectation values of quantum operators. In this paper, we study an alternative approach based on Bohmian mechanics. In Bohmian mechanics the quantum system is not only described by the wave function, but also with additional variables such as particle positions or fields. By letting the classical equations of motion depend on these variables, rather than the quantum expectation values, a semi-classical approximation is obtained that is closer to the exact quantum results than the usual approach. We discuss the Bohmian semi-classical approximation in various contexts, such as nonrelativistic quantum mechanics, quantum electrodynamics and quantum gravity. The main motivation comes from quantum gravity. The quest for a quantum theory for gravity is still going on. Therefore a semi-classical approach where gravity is treated classically may be an approximation that already captures some quantum gravitational aspects. The Bohmian semi-classical theories will be derived from the full Bohmian theories. In the case there are gauge symmetries, like in quantum electrodynamics or quantum gravity, special care is required. In order to derive a consistent semi-classical theory it will be necessary to isolate gauge-independent dependent degrees of freedom from gauge degrees of freedom and consider the approximation where some of the former are considered classical.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 567 ◽  
Author(s):  
Mojtaba Ghadimi ◽  
Michael Hall ◽  
Howard Wiseman

“Locality” is a fraught word, even within the restricted context of Bell’s theorem. As one of us has argued elsewhere, that is partly because Bell himself used the word with different meanings at different stages in his career. The original, weaker, meaning for locality was in his 1964 theorem: that the choice of setting by one party could never affect the outcome of a measurement performed by a distant second party. The epitome of a quantum theory violating this weak notion of locality (and hence exhibiting a strong form of nonlocality) is Bohmian mechanics. Recently, a new approach to quantum mechanics, inspired by Bohmian mechanics, has been proposed: Many Interacting Worlds. While it is conceptually clear how the interaction between worlds can enable this strong nonlocality, technical problems in the theory have thus far prevented a proof by simulation. Here we report significant progress in tackling one of the most basic difficulties that needs to be overcome: correctly modelling wavefunctions with nodes.


1994 ◽  
Vol 41 (1) ◽  
pp. 168-169
Author(s):  
Peter Knight

Author(s):  
S. Majid

We consider Hilbert’s problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space–time as motivated by this non-standard philosophy, including a new toy model of gravity on a space–time consisting of four points forming a square. This article is part of the theme issue ‘Hilbert’s sixth problem’.


Sign in / Sign up

Export Citation Format

Share Document