The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics

1994 ◽  
Vol 31 (06) ◽  
pp. 31-3281-31-3281
1998 ◽  
Vol 13 (04) ◽  
pp. 677-693 ◽  
Author(s):  
FATIMAH SHOJAI ◽  
MEHDI GOLSHANI

In this paper, a new approach to quantum gravity is presented in which the de-Broglie–Bohm quantum theory of motion is geometrized. This way of considering quantum gravity leads automatically to the fact that the quantum effects are contained in the conformal degree of freedom of the space–time metric. The present theory is then applied to the maximally symmetric space–time of cosmology, and it is observed that it is possible to avoid the initial singularity, while at large times the correct classical limit emerges.


1998 ◽  
Vol 07 (02) ◽  
pp. 201-213 ◽  
Author(s):  
J. ACACIO DE BARROS ◽  
N. PINTO-NETO

We apply the causal interpretation of quantum mechanics to homogeneous quantum cosmology and show that the quantum theory is independent of any time-gauge choice and there is no issue of time. We exemplify this result by studying a particular minisuperspace model where the quantum potential driven by a prescribed quantum state prevents the formation of the classical singularity, independently on the choice of the lapse function. Hence, within the framework of the causal interpretation of quantum cosmology, the fast-slow-time gauge conjecture is incorrect for homogeneous minisuperspace models.


1994 ◽  
Vol 41 (1) ◽  
pp. 168-169
Author(s):  
Peter Knight

1988 ◽  
Vol 03 (07) ◽  
pp. 645-651 ◽  
Author(s):  
SUMIO WADA

A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Andrea Oldofredi ◽  
Michael Esfeld

Paul Dirac has been undoubtedly one of the central figures of the last century physics, contributing in several and remarkable ways to the development of quantum mechanics; he was also at the centre of an active community of physicists, with whom he had extensive interactions and correspondence. In particular, Dirac was in close contact with Bohr, Heisenberg and Pauli. For this reason, among others, Dirac is generally considered a supporter of the Copenhagen interpretation of quantum mechanics. Similarly, he was considered a physicist sympathetic with the positivistic attitude which shaped the development of quantum theory in the 1920s. Against this background, the aim of the present essay is twofold: on the one hand, we will argue that, analyzing specific examples taken from Dirac's published works, he can neither be considered a positivist nor a physicist methodologically guided by the observability doctrine. On the other hand, we will try to disentangle Dirac's figure from the mentioned Copenhagen interpretation, since in his long career he employed remarkably different—and often contradicting—methodological principles and philosophical perspectives with respect to those followed by the supporters of that interpretation.Quanta 2019; 8: 68–87.


2020 ◽  
pp. 185-197
Author(s):  
Alastair Wilson

Distinguish contingency in general from anthropic contingency. The former is what really could happen; the latter is what really could be observed to happen. Quantum histories which host no life cannot, as a matter of obvious necessity, be observed. This distinction generates an anthropic observation selection effect, which has been employed in response to the fine-tuning argument for the design hypothesis. This chapter argues that fine-tuning is a genuine phenomenon that cries out for explanation; that in one-world approaches to quantum theory a chancy determination of cosmological parameters would render the one universe we are in preposterously lucky; that no preposterous luck is required from the perspective of quantum modal realism; and that the correct interpretation of quantum mechanics turns out to have a significant evidential bearing on the design question.


Sign in / Sign up

Export Citation Format

Share Document